Toggle light / dark theme

Automation Anywhere, the leader in intelligent automation, announced a historic expansion of its Automation Success Platform, enabling enterprises to accelerate their transformation journeys and put AI to work securely throughout their organizations. Automation Anywhere’s new tools and enhancements deliver AI-powered automation across every team, system and process. During Imagine 2023, the company unveiled a new Responsible AI Layer, and announced four key product updates including the brand-new Autopilot, which enables the rapid development of end-to-end automations from Process Discovery, using the power of generative AI. The company also announced new, expanded features in Automation Co-Pilot for Business Users, Automation Co-Pilot for Automators, and Document Automation.

“The combination of generative AI and intelligent automation represents the most transformational technology shift of our generation,” said Mihir Shukla, CEO and Co-Founder, Automation Anywhere. “Every company, every team, every individual will be able to re-imagine their system of work and automate the processes that hold them back. Great people, empowered with AI and intelligent automation will be absolutely transformative to their organizations as they increase their productivity, creativity and accelerate the business.”

Studying genes in families with a propensity for certain diseases has led to many critical advances in medicine, including the discovery of statins in family members who suffered heart attacks at an early age.

Now, a team of researchers at Case Western Reserve University has identified an in a gene linked to a highly lethal cancer called (EAC).

“With this discovery, we will be able to identify early those at a high risk of developing EAC in their lifetime, and accordingly tailor screening, lifestyle and treatment strategies to prevent cancer development,” said Kishore Guda, an associate professor at the Case Western Reserve School of Medicine and member of the Case Comprehensive Cancer Center.

Abstract of full article w/ downloadable pdf:

Fluorescence-guided intervention can bolster standard therapies by detecting and treating microscopic tumors before lethal recurrence. Tremendous progress in photoimmunotherapy and nanotechnology has been made to treat metastasis. However, many are lost in translation due to heterogeneous treatment effects. Here, we integrate three technological advances in targeted photo-activable multi-agent liposome (TPMAL), fluorescence-guided intervention, and laser endoscopy (ML7710) to improve photoimmunotherapy. TPMAL consists of a nanoliposome chemotherapy labeled with fluorophores for tracking and photosensitizer immunoconjugates for photoimmunotherapy… More.


Fluorescence-guided photoimmunotherapy using nanotechnology and ML7710 reduces heterogeneous therapy effects and tumor metastasis.

Google is introducing Bard, its artificially intelligent chatbot, to other members of its digital family—including Gmail, Maps and YouTube—as it seeks ward off competitive threats posed by similar technology run by Open AI and Microsoft.

Bard’s expanded capabilities announced Tuesday will be provided through an English-only extension that will enable users to allow the chatbot to mine embedded in their Gmail accounts as well as pull directions from Google Maps and find helpful videos on YouTube. The extension will also open a door for Bard to fetch travel information from Google Flights and extract information from documents stored on Google Drive.

Google is promising to protect users’ privacy by prohibiting human reviewers from seeing the potentially sensitive information that Bard gets from Gmail or Drive, while also promising that the data won’t used as part of the main way the Mountain View, California, company makes money—selling ads tailored to people’s interests.

Aiming to be first in the world to have the most advanced forms of artificial intelligence while also maintaining control over more than a billion people, elite Chinese scientists and their government have turned to something new, and very old, for inspiration—the human brain.

Equipped with surveillance and visual processing capabilities modelled on human vision, the new “brain” will be more effective, less energy hungry, and will “improve governance,” its developers say. “We call it bionic retina computing,” Gao Wen, a leading artificial intelligence researcher, wrote in the paper “City Brain: Challenges and Solution.”

Chemotherapy as a treatment for cancer is one of the major medical success stories of the 20th century, but it’s far from perfect. Anyone who has been through chemotherapy or who has had a friend or loved one go through it will be familiar with its many side effects: hair loss, nausea, weakened immune system, and even infertility and nerve damage.

This is because drugs are toxic. They’re meant to kill cancer cells by poisoning them, but since derive from healthy cells and are substantially similar to them, it is difficult to create a drug that kills them without also harming healthy tissue.

But now a pair of Caltech research teams have created an entirely new kind of drug delivery system, one that they say may finally give doctors the ability to treat cancer in a more targeted way. The system employs drugs that are activated by —and only right where they are needed in the body.

Sunlight is an inexhaustible source of energy, and utilizing sunlight to generate electricity is one of the cornerstones of renewable energy. More than 40% of the sunlight that falls on Earth is in the infrared, visible and ultraviolet spectra; however, current solar technology utilizes primarily visible and ultraviolet rays. Technology to utilize the full spectrum of solar radiation—called all-solar utilization—is still in its infancy.

A team of researchers from Hokkaido University, led by Assistant Professor Melbert Jeem and Professor Seiichi Watanabe at the Faculty of Engineering, have synthesized tungstic acid–based materials doped with copper that exhibited all-solar utilization. Their findings are published in the journal Advanced Materials.

“Currently, the near-and mid-infrared spectra of solar radiation, ranging from 800 nm to 2,500 nm, is not utilized for energy generation,” explains Jeem. “Tungstic acid is a candidate for developing nanomaterials that can potentially utilize this spectrum, as it possesses a crystal structure with defects that absorb these wavelengths.”