Toggle light / dark theme

In a new study, researchers from the University of California, Santa Barbara, (UCSB) have reported the discovery of a spin microemulsion in two-dimensional systems of spinor Bose-Einstein condensates, shedding light on a novel phase transition marked by the loss of superfluidity, complex pseudospin textures, and the emergence of topological defects.

A Bose-Einstein (B-E) condensate is a that occurs at , where bosons, such as photons, become indistinguishable and behave as a single quantum entity, forming a superfluid or superconducting state.

B-E condensates can exhibit unique quantum properties, such as a spin microemulsion. When the internal spin states of atoms in a B-E condensate are coupled to their motion, a unique called a spin microemulsion can emerge.

Cooper pairs are pairs of electrons in superconducting materials that are bound to each other at low temperatures. These electron pairs are at the root of superconductivity, a state where materials have zero resistance at low temperatures due to quantum effects. As quantum systems that can be relatively large and easy to manipulate, superconductors are highly useful for the development of quantum computers and other advanced technologies.

Researchers at Delft University of Technology (TU Delft) recently demonstrated the controllable splitting of a Copper pair into its two constituent electrons within a hybrid quantum dot system, holding onto them after the split. Their paper, published in Physical Review Letters, could open new avenues for the study of superconductivity and entanglement in quantum dot systems.

“This research was motivated by the fact that Cooper pairs, the fundamental ingredients of superconductivity that carry electrical current with no resistance, are formed by pairs of electrons that are expected to be perfectly quantum entangled,” Christian Prosko, one of the authors of the paper, told Phys.org.

Researchers at the University of Chicago’s Pritzker School of Molecular Engineering, led by Giulia Galli, have conducted a computational study predicting the conditions necessary to create specific spin defects in silicon carbide. These findings, detailed in a paper published in Nature Communications

<em> Nature Communications </em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

…Such moves are helping countries like the United Kingdom to develop the expertise needed to guide AI for the public good, says Bengio. But legislation will also be needed, he says, to safeguard against the development of future AI systems that are smart and hard to control.

We are on a trajectory to build systems that are extremely useful and potentially dangerous, he says. We already ask pharma to spend a huge chunk of their money to prove that their drugs aren’t toxic. We should do the same.

Doi: https://doi.org/10.1038/d41586-023-03472-x


UK and US governments establish efforts to democratize access to supercomputers that will aid studies on AI systems.

Researchers have uncovered that proteins use a common chemical label as a shield to protect them from degradation, which in turn affects motility and aging. Proteins are key to all processes in our cells and understanding their functions and regulation is of major importance.

“For many years, we have known that nearly all human proteins are modified by a specific chemical group, but its functional impact has remained undefined,” says professor Thomas Arnesen at the Department of Biomedicine, University of Bergen.

Aging is a natural process that affects all living organisms, prompting gradual changes in their behavior and abilities. Past studies have highlighted several physiological factors that can contribute to aging, including the body’s immune responses, an imbalance between the production of reactive oxygen (i.e., free radicals) and antioxidants, and sleep disturbances.

While the link between aging and these different factors is well-document, the connection between them is still poorly understood. Researchers at Washington University in St. Louis recently identified an immune molecule that could play a key role in modulating the process of aging and the duration living organism’s lifespan.

Their paper, published in Neuron, was inspired by two independent research efforts at the university.

Japanese scientists have developed a new type of plastic that’s strong at room temperature, but can be easily broken down on demand into its base components. In seawater, it starts to break down into food for marine life, and just to top it off, it can self-heal and remember past shapes.

Plastic is everywhere in our modern world, for better or worse. Its toughness makes it an extremely useful material for everything from household items to vehicle parts, but that same toughness makes it hard to break down for recycling or disposal.

In the new study, scientists at the University of Tokyo developed a new plastic material that can be broken down more easily, either in recycling plants or in nature. It’s based on a class of plastic called an epoxy resin vitrimer, which are strong at room temperature but can be reshaped and molded with a bit of added heat. Normally, vitrimers are brittle, but the team improved the recipe by adding a molecule called polyrotaxane.

More than a decade ago, the co-founder of Google’s DeepMind artificial intelligence lab predicted that by 2028, AI will have a half-and-half shot of being about as smart as humans — and now, he’s holding firm on that forecast.

In an interview with tech podcaster Dwarkesh Patel, DeepMind co-founder Shane Legg said that he still thinks that researchers have a 50–50 chance of achieving artificial general intelligence (AGI), a stance he publicly announced at the very end of 2011 on his blog.

It’s a notable prediction considering the exponentially growing interest in the space. OpenAI CEO Sam Altman has long advocated for an AGI, a hypothetical agent that is capable of accomplishing intellectual tasks as well as a human, that can be of benefit to all. But whether we’ll ever be able to get to that point — let alone agree on one definition of AGI — remains to be seen.

Musk cofounded OpenAI—the parent company of the viral chatbot ChatGPT—in 2015 alongside Altman and others. But when Musk proposed that he take control of the startup to catch up with tech giants like Google, Altman and the other cofounders rejected the proposal. Musk walked away in February 2018 and changed his mind about a “massive planned donation.”

Now Musk’s new company, xAI, is on a mission to create an AGI, or artificial general intelligence, that can “understand the universe,” the billionaire said in a nearly two-hour-long Twitter Spaces talk on Friday. An AGI is a theoretical type of A.I. with human-like cognitive abilities and is expected to take at least another decade to develop.

Musk’s new company debuted only days after OpenAI announced in a July 5 blog post that it was forming a team to create its own superintelligent A.I. Musk said xAI is “definitely in competition” with OpenAI.