Toggle light / dark theme

The nuclear fusion industry witnessed tremendous developments in 2023. The year 2022 drew its curtains with the National Ignition Facility (NIF) at Lawrence Livermore National Lab producing a fusion reaction in the laboratory that yielded more energy than was absorbed by the fuel to initiate it. The reaction yielded 1.3 megajoules of energy, about five times the 250 kilojoules that were absorbed by the capsule. This scientific breakthrough sparked an increase in investments in 2023 with new companies joining the race.

The Fusion Industry Association, or FIA, compiled the “Global Fusion Industry Report” of 2023. Pressing for fusion energy to take over as a cleaner source of energy, FIA presented a comprehensive overview of the advancements made in the second quarter of the year in this report. It highlights the effect of a successful ignition or net energy gain in nuclear fusion and its economic consequences.

FIA observed a net increase in investments in the fusion power industry. With $1.4 billion more than the previous year, 27 companies in fusion were able to draw $46 billion in investment. The ignition inspired the emergence of newer and smaller companies which contributed the majority share of the surge in investments. There are two reported big chequeholders securing funding over $100 million in the 2nd quarter—TAE Technologies in California and ENN in China.

This is a good application for medicine. 👍🏼


“I practically could not walk anymore without falling frequently, several times a day,” said Marc, who is now 62 years old. “In some situations, such as entering a lift, I’d trample on the spot, as though I was frozen there, you might say.”

“This allows me to walk better and to stabilize. I’m not even afraid of the stairs anymore.”

What’s new? Marc’s problem is unfortunately not unusual — about 90% of people with Parkinson’s develop a disabling walking disorder in the disease’s advanced stages. However, unlike anyone else in the world, an experimental spinal cord stimulator is now helping him overcome his mobility issue.

Last week was an important moment in the debate about AI, with President Biden issuing an executive order and the UK’s AI Safety Summit convening world leaders.

Much of the buzz around these events made it sound like AI presents us with a binary choice: unbridled optimism, or existential fear. But there was also a third path available, a nuanced, practical perspective that examines the real risks and benefits of AI.

There have been people promoting this third perspective for years — although GPT-fueled headlines of the past 12 months have often looked past them. They are foundations, think tanks, researchers and activists (including a number of Mozilla fellows and founders) plus the policymakers behind efforts like last year’s AI Blueprint for an AII Bill of Rights.

Scientists at Oak Ridge National Laboratory have used their expertise in quantum biology, artificial intelligence and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

CRISPR is a powerful tool for bioengineering, used to modify to improve an organism’s performance or to correct mutations. The CRISPR Cas9 tool relies on a single, unique guide RNA that directs the Cas9 enzyme to bind with and cleave the corresponding targeted site in the genome.

Existing models to computationally predict effective guide RNAs for CRISPR tools were built on data from only a few model species, with weak, inconsistent efficiency when applied to microbes.

Researchers from the Niels Bohr Institute (NBI) have removed a key obstacle for development of extremely sensitive monitoring devices based on quantum technology.

Monitoring the heartbeat of an unborn child and other types of delicate medical examinations show the potential of . Since these sensors exploit phenomena at the scale of atoms, they can be far more accurate than today’s sensors.

Researchers from the Niels Bohr Institute (NBI), University of Copenhagen, have managed to overcome a major obstacle for development of quantum sensors. Their results are published in Nature Communications.

The University of Oxford researchers for the first time showcased that neural cells can be 3D printed to replicate the structure of the brain’s outer layer: the cerebral cortex.


In a significant breakthrough, scientists have created brain tissue using human stem cells through 3D printing. This advancement holds promise for potential future applications in treating brain injuries.

For the first time, the University of Oxford researchers showcased that neural cells can be 3D printed to replicate the structure of the brain’s outer layer: the cerebral cortex.

This accomplishment marks a significant advancement in the realm of neural tissue engineering.

UCLA scientists have developed a new method to engineer more powerful immune cells that can potentially be used for “off-the-shelf” cell therapy to treat challenging cancers.

“Off-the-shelf” cell therapy, also known as allogenic therapy, uses derived from healthy donors instead of patients. The approach can bring , like (CAR) T cell therapy, to more patients in a timelier manner, which is one of the major barriers in getting these life-saving treatments to patients.

“Time is often of the essence when it comes to treating people with advanced cancers,” said Lili Yang, associate professor of microbiology, immunology and molecular genetics and member of the UCLA Health Jonsson Comprehensive Cancer Center. “Currently, these types of therapies need to be tailored to the individual patient. We have to extract from a patient, genetically engineer the cells and then re-infuse them back into the patient. This process can take weeks to months and can cost hundreds of thousands of dollars to treat each patient.”