Toggle light / dark theme

Metamaterials are products of engineering wizardry. They are made from everyday polymers, ceramics, and metals. And when constructed precisely at the microscale, in intricate architectures, these ordinary materials can take on extraordinary properties.

With the help of computer simulations, engineers can play with any combination of microstructures to see how certain materials can transform, for instance, into sound-focusing acoustic lenses or lightweight, bulletproof films.

But simulations can only take a design so far. To know for sure whether a metamaterial will stand up to expectation, physically testing them is a must. But there’s been no reliable way to push and pull on metamaterials at the microscale, and to know how they will respond, without contacting and physically damaging the structures in the process.

A new method of creating laser pulses, more than 1,000 times as powerful as those currently in existence, has been proposed by scientists in the UK and South Korea.

The scientists have used in joint research to demonstrate a new way of compressing light to increase its intensity sufficiently to extract particles from vacuum and study the nature of matter. To achieve this the three groups have come together to produce a very special type of mirror—one that not only reflects pulses of light but compresses them in time by a factor of more than two hundred times, with further compression possible.

The groups from the University of Strathclyde, UNIST and GIST propose a simple idea—to use the gradient in the density of plasma, which is fully ionized matter, to cause photons to “bunch,” analogous to the way a stretched-out group of cars bunch up as they encounter a steep hill. This could revolutionize the next generation of lasers to enable their powers to increase by more than one million times from what is achievable now.

An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle tactile sensation abilities of robots and human limb prosthetics and could be applied to virtual reality in the future, the authors suggest.

Humans can gently slide a finger on the surface of an object and identify it by capturing both static pressure and high-frequency vibrations. Previous approaches to create artificial tactile for sensing physical stimuli, such as pressure, have been limited in their ability to identify real-world objects upon touch, or they rely on multiple sensors. Creating a artificial sensory system with high spatiotemporal resolution and sensitivity has been challenging.

Chuan Fei Guo and colleagues present a flexible slip sensor that mimics the features of a human fingerprint to enable the system to recognize small features on surface textures when touching or sliding the sensor across the surface. The authors integrated the sensor onto a prosthetic human hand and added machine learning to the system.

Six archival Chandra observations are matched with eight sets of radio data and studied in the context of the outflow method to measure and study the spin properties of |$\rm {Sgr ~A^{*}}$|⁠. Three radio and X-ray data sets obtained simultaneously, or partially simultaneously, are identified as preferred for the purpose of measuring the spin properties of |$\rm {Sgr ~A^{*}}$|⁠. Similar results are obtained with other data sets. Results obtained with the preferred data sets are combined and indicate weighted mean values of the spin function of |$F = 0.62 \pm 0.10$| and dimensionless spin angular momentum of |$a_* = 0.90 \pm 0.06$|⁠

A robotic AI-Chemist@USTC makes useful Oxygen generation catalyst with Martian meteorites. (Image by AI-Chemist Group at USTC)

Immigration and living on Mars have long been depicted in science fiction works. But before dream turns into reality, there is a hurdle man has to overcome — the lack of essential chemicals such as oxygen for long-term survival on the planet. However, hope looms up thanks to recent discovery of water activity on Mars. Scientists are now exploring the possibility of decomposing water to produce oxygen through electrochemical water oxidation driven by solar power with the help of oxygen evolution reaction (OER) catalysts. The challenge is to find a way to synthesize these catalysts in situ using materials on Mars, instead of transporting them from the Earth, which is of high cost.

To tackle this problem, a team led by Prof. LUO Yi, Prof. JIANG Jun, and Prof. SHANG Weiwei from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS), recently made it possible to synthesize and optimize OER catalysts automatically from Martian meteorites with their robotic artificial intelligence (AI)-chemist.

Published 9 seconds ago.

From the very beginning, warp drive has been a major part of Paramount’s Star Trek franchise for the simple reason that it explains how our characters can traverse the galaxy faster than the speed of light. Warp drive has changed a lot over the years, so we decided to see which ship would get from Earth to Jupiter quicker: the Enterprise NX-01 captained by Jonathan Archer, the Enterprise NCC-1701 captained by James T. Kirk, or the Enterprise 1701-D captained by Jean-Luc Picard. The answer is simple: Picard’s ship is the clear winner.

“JWST is revolutionizing exoplanet characterization, providing unprecedented insights at remarkable speed,” said Dr. Leen Decin.


NASA’s James Webb Space Telescope, the world’s most powerful telescope ever built, continues to dazzle with its scientific findings both within and outside our solar system. Most recently, an international team of researchers used JWST’s Mid-Infrared Instrument (MIRI) to analyze the atmosphere of WASP-107b, a Neptune-like exoplanet located approximately 211 light-years from Earth and orbits its parent star in just 5.7 days.

Using MIRI, the team identified water vapor, sulfur dioxide, and silicate sand clouds swirling around in the atmosphere of WASP-107b, which is considered a “fluffy” exoplanet since its mass is close to Neptune’s, but its overall size is closer to Jupiter, making it unique compared to the gas giants of our solar system. The findings were published today in the journal Nature.

Scientists from Centogene, a company focused on rare and neurodegenerative diseases, along with their collaborators at University College London and elsewhere have published a study that links the Acyl-CoA Binding Domain Containing 6 (ACBD6) gene to new forms of early-onset dystonia and parkinsonism. The study is published in Brain in a paper titled, “Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders.”

Using whole exome sequencing data from 45 patients—23 males and 22 females between the ages of 1 and 50 years old—the researchers identified several novel and ultra-rare bi-allelic predicted loss-of-function variants in ACBD6, which are linked to a unique neurodevelopmental syndrome. The condition is accompanied by complex and progressive cognitive and movement disorders such as dystonia in 94% of cases and parkinsonism in older patients or about 32% of cases.

To test the association between ACBD6 and the syndrome, the researchers used zebrafish and frog knockouts. According to tests described in the paper, they observed similar phenotypes to those of affected individuals such as movement disorders, seizures, and facial dysmorphology in the zebrafish models. Their observations of the effects in zebrafish suggest “a combination of muscle and neuronal degeneration leading to movement abnormalities” resulting from the loss of the gene. When they assessed the effects of inactivating the gene in frogs, they observed reported failures in cell movement during gastrulation as a result of the gene’s loss.