Toggle light / dark theme

This experimental milestone allows for the preservation of quantum information even when entanglement is fragile.

For the first time, researchers from the Structured Light Laboratory (School of Physics) at the University of the Witwatersrand in South Africa, led by Professor Andrew Forbes, in collaboration with string theorist Robert de Mello Koch from Huzhou University in China (previously from Wits University), have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

“We achieved this experimental milestone by entangling two identical photons and customizing their shared wave-function in such a way that their topology or structure becomes apparent only when the photons are treated as a unified entity,” explains lead author, Pedro Ornelas, an MSc student in the structured light laboratory.

When large stars or celestial bodies explode near Earth, their debris can reach our solar system. Evidence of these cosmic events is found on Earth and the Moon, detectable through accelerator mass spectrometry (AMS). An overview of this exciting research was recently published in the scientific journal Annual Review of Nuclear and Particle Science by Prof. Anton Wallner of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), who soon plans to decisively advance this promising branch of research with the new, ultrasensitive AMS facility “HAMSTER.”

In their paper, HZDR physicist Anton Wallner and colleague Prof. Brian D. Fields from the University of Illinois in Urbana, USA, provide an overview of near-Earth cosmic explosions with a particular focus on events that occurred three and, respectively, seven million years ago.

“Fortunately, these events were still far enough away, so they probably did not significantly impact the Earth’s climate or have major effects on the biosphere. However, things get really uncomfortable when cosmic explosions occur at a distance of 30 light-years or less,” Wallner explains. Converted into the astrophysical unit parsec, this corresponds to less than eight to ten parsecs.

When Isaac Newton inscribed onto parchment his now-famed laws of motion in 1,687, he could have only hoped we’d be discussing them three centuries later.

Writing in Latin, Newton outlined three universal principles describing how the motion of objects is governed in our Universe, which have been translated, transcribed, discussed and debated at length.

But according to a philosopher of language and mathematics, we might have been interpreting Newton’s precise wording of his first law of motion slightly wrong all along.

“I think this material could have a big impact because it works really well,” said Dr. Mircea Dincă. “It is already competitive with incumbent technologies, and it can save a lot of the cost and pain and environmental issues related to mining the metals that currently go into batteries.”


Electric vehicles (EVs) have become a household name in the last few years with several companies fighting to compete in the everchanging EV landscape as EV technology continues to improve in cost, efficiency, and the materials used to manufacture the batteries responsible for sustaining this clean energy revolution. While EV batteries have traditionally used cobalt for their battery needs, a recent study published in ACS Central Science discusses how organic cathode materials could be used as a substitute for cobalt for lithium-ion batteries while potentially offering similar levels of storage capacity and charging capabilities, as cobalt has shown to be financially, environmentally, and socially expensive.

“Cobalt batteries can store a lot of energy, and they have all of features that people care about in terms of performance, but they have the issue of not being widely available, and the cost fluctuates broadly with commodity prices,” said Dr. Mircea Dincă, who is a W.M. Keck Professor of Energy at MIT and a co-author on the study.

For their study, the researchers constructed a layered organic cathode comprised of cellulose, rubber, and other Earth-based elements. The team then subjected their organic cathode to a variety of tests, including energy storage, delivery, and charging capabilities. In the end, they found their cathode’s capabilities exceed most cobalt-based cathodes, including a charge-discharge time of 6 minutes. Additionally, while battery cathodes are known for significant wear and tear due to cracking from the flow of lithium ions, the researchers noted that the rubber and cellulose materials helped extend the battery cathode’s lifetime.

Summary: A groundbreaking study by physicists and neuroscientists reveals that the connectivity among neurons stems from universal networking principles, not just biological specifics.

Analyzing various model organisms, researchers found a consistent “heavy-tailed” distribution of neural connections, guided by Hebbian dynamics, indicating that neuron connectivity relies on general network organization.

This discovery, transcending biology, potentially applies to non-biological networks like social interactions, offering insights into the fundamental nature of networking.

A.I. for longevity and long lived flies.


Kennedy Schaal presents “Using Advanced A.I. and Blockchain Technology to Targey Aging” at the Longevity+DeSci Summit NYC (EARD 2023) hosted by Lifespan.io. Summary ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ Kennedy Schaal is the founder and CEO of Rejuve Biotech, an AI-driven therapeutics discovery company solving the problems for longevity and age-associated diseases. By using advanced Artificial Intelligence to combine data from the Methuselah Flies with data from people, Rejuve. Bio can shorten the drug discovery pipeline and rapidly develop novel therapeutics to help people live longer. They have two high-impact and novel data sources, as well as unique artificial intelligence technology. First and foremost, they are the sole owner of data from the Methuselah Flies (fruit flies) that have been bred for longevity. Second, because flies have a shorter life cycle, they can be tested for longevity much faster than other animal models. Rejuve Biotech has the unique ability to test multiple interventions and treatment combinations over the course of a fruit fly’s life and in various aspects of its life (e.g., mating, disease resistance). In addition, they also have quick access to Crowdsourced Human Data collected by a partner company, Rejuve Network. Kennedy Schaal is an accomplished biotechnology executive with a strong leadership track record in applied genomic research and Artificial Intelligence at the frontier of longevity science. She is also a multi-published author on the science of longevity and applied genomics trials. Kennedy is also a world-leading expert on genomic selection and breeding for innovative Drosophila Methuselah Flies, which together with applied Artificial Intelligence solve many of today’s pain points in longevity research, with the potential for massive impact on the health and lifespan of people across the planet. Experienced Laboratory Director and Chief Biologist with a demonstrated history of working in the biotechnology industry. Strong research professional skilled in evolutionary biology, genetics, and the study of aging-related diseases.

If we embrace the idea that consciousness is the fundamental fabric of the universe, our exploration of technology, particularly in the realms of artificial intelligence and virtual realities, takes on new significance.


The concept of teleological evolution, driven by a purpose or end goal, posits that the universe is not just a random assembly of matter and energy, but rather a carefully orchestrated symphony of consciousness.