Year 2023 face_with_colon_three
Bioengineers and tissue engineers intend to reconstruct skin equivalents with physiologically relevant cellular and matrix architectures for basic research and industrial applications. Skin pathophysiology depends on skin-nerve crosstalk and researchers must therefore develop reliable models of skin in the lab to assess selective communications between epidermal keratinocytes and sensory neurons.
In a new report now published in Nature Communications, Jinchul Ahn and a research team in mechanical engineering, bio-convergence engineering, and therapeutics and biotechnology in South Korea presented a three-dimensional, innervated epidermal keratinocyte layer on a microfluidic chip to create a sensory neuron-epidermal keratinocyte co-culture model. The biological model maintained well-organized basal-suprabasal stratification and enhanced barrier function for physiologically relevant anatomical representation to show the feasibility of imaging in the lab, alongside functional analyses to improve the existing co-culture models. The platform is well-suited for biomedical and pharmaceutical research.
Skin: The largest sensory organ of the human body