Toggle light / dark theme

Spintronics is a field that deals with electronics that exploit the intrinsic spin of electrons and their associated magnetic moment for applications such as quantum computing and memory storage devices. Owing to its spin and magnetism exhibited in its insulator-metal phase transition, the strongly correlated electron systems of nickel oxide (NiO) have been thoroughly explored for more than eight decades. Interest in its unique antiferromagnetic (AF) and spin properties has seen a revival lately since NiO is a potential material for ultrafast spintronics devices.

Despite this rise in popularity, exploration of its magnetic properties using the low-energy electron diffraction (LEED) technique has not received much attention since the 1970s. To review the understanding of the surface properties, Professor Masamitsu Hoshino and Emeritus Professor Hiroshi Tanaka, both from the Department of Physics at Sophia University, Japan, revisited the surface LEED crystallography of NiO.

The results of their quantitative experimental study investigating the coherent exchange scattering in Ni2+ ions in AF single crystal NiO were reported in The European Physical Journal D.

The electrocatalytic nitric oxide reduction reaction (NORR) has attracted significant attention as an ecofriendly alternative to the conventional Haber–Bosch process for producing ammonia (NH3). However, the poor selectivity to NH3 and low catalyst stability under harsh conditions are great challenges in NORR. Herein, the core–shell structure of nickel nanoparticles enclosed with a nitrogen-doped carbon layer (Ni@NC) electrocatalyst derived from covalent organic frameworks is employed for high performance in NORR. The Ni@NC-700 achieved the highest FENH3 of 82.94% with an NH3 yield rate of 19.00 μmol cm–2 h–1 at 0.16 V (vs reversible hydrogen electrode) in a 0.1 M HClO4 electrolyte. Control experiments revealed that nickel nanoparticles (Ni NPs) acted as active centers in Ni@NC for efficient production of NH3. The ideal carbon shell protection of Ni NPs and the high inherent catalytic TOF of Ni@NC-700 revealed a promising candidate for an efficient NORR electrocatalyst. The stability test demonstrated the remarkable stability of Ni@NC. The Ni NPs were protected by carbon nanostructures resembling core–shell catalysts, preventing metal dissolution during rough electrolysis.

In a collaboration with Kyushu University, a team of Harvard University scientists says their new research into the ability to regrow lost limbs sets the stage’ for proper limb regeneration.

Of course, some animals, including amphibians, can regrow a lost arm or leg, but the team behind this latest research hopes to bring that ability to humans who hope to regrow lost limbs.

The researchers also say this process could facilitate the growing of limbs in animals that lost them to evolution, such as snakes.

Bioresorbable neural implants offer a promising solution to the challenges of secondary surgeries required for the removal of implanted devices. Here, the authors introduce a fully bioresorbable flexible hybrid opto-electronic system for simultaneous electrophysiological recording and optogenetic stimulation.

Many doubt whether existence has any purpose or meaning, but could entirely civilizations become nihilistic. Would this spell their doom? And if not, what would they be like?
Use code isaacarthur at the link below to get an exclusive 60% off an annual Incogni plan: https://incogni.com/isaacarthur.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.

Credits:
Nihilistic Aliens.
Episode 423b; December 3, 2023
Produced, Written \& Narrated by: Isaac Arthur.
Editor: Donagh Broderick.
Music Courtesy of: Steve Cardon.

The story of how life started on Earth is one that scientists are eager to learn. Researchers may have uncovered an important detail in the plot of chapter one: an explanation of how bubbles of fat came to form the membranes of the very first cells.

A key part of the new findings, made by a team from The Scripps Research Institute in California, is that a chemical process called phosphorylation may have happened earlier than previously thought.

This process adds groups of atoms that include phosphorus to a molecule, bringing extra functions with it – functions that can turn spherical collections of fats called protocells into more advanced versions of themselves, able to be more versatile, stable, and chemically active.