Toggle light / dark theme

Our memories are rich in detail: we can vividly recall the color of our home, the layout of our kitchen, or the front of our favorite café. How the brain encodes this information has long puzzled neuroscientists.

In a new Dartmouth-led study, researchers identified a neural coding mechanism that allows the transfer of information back and forth between perceptual regions to memory areas of the . The results are published in Nature Neuroscience.

Prior to this work, the classic understanding of brain organization was that perceptual regions of the brain represent the world “as it is,” with the brain’s visual cortex representing the external world based on how light falls on the retina, “retinotopically.” In contrast, it was thought that the brain’s memory areas represent information in an abstract format, stripped of details about its physical nature. However, according to the co-authors, this explanation fails to take into account that as information is encoded or recalled, these regions may in fact, share a common code in the brain.

Diets that are higher in fat and significantly lower in carbohydrates are known to have a drastic effect on reducing the incidence of seizures in individuals with drug-resistant forms of epilepsy, particularly among children.

While it’s becoming apparent the diet creates some sort of shift in the gut’s microflora, the precise nature of those changes and their connection to the prevalence of seizures remains a mystery.

In a prospective study on children and experiments involving mice, researchers from the University of California, Los Angeles (UCLA) bring us a step closer to understanding how the foods we eat alter the functions of microbes in our digestive system, which in turn affect a variety of neurological functions suspected to play a role in epilepsy.

Researchers are actively engaged in the dynamic manipulation of quantum systems and materials to realize significant energy management and conservation breakthroughs.

This endeavor has catalyzed the development of a cutting-edge platform dedicated to creating quantum thermal machines, thereby unlocking the full potential of quantum technologies in advanced energy solutions.

A team of researchers has analyzed more than one million galaxies to explore the origin of the present-day cosmic structures, reports a recent study published in Physical Review D as an Editors’ Suggestion.

Until today, precise observations and analyses of the cosmic microwave background (CMB) and large-scale structure (LSS) have led to the establishment of the standard framework of the universe, the so-called ΛCDM model, where cold dark matter (CDM) and dark energy (the cosmological constant, Λ) are significant characteristics.

This model suggests that primordial fluctuations were generated at the beginning of the universe, or in the early universe, which acted as triggers, leading to the creation of all things in the universe including stars, galaxies, galaxy clusters, and their spatial distribution throughout space. Although they are very small when generated, fluctuations grow with time due to the gravitational pulling force, eventually forming a dense region of dark matter, or a halo. Then, different halos repeatedly collided and merged with one another, leading to the formation of celestial objects such as galaxies.