February saw the user share for both the RTX 4,060 and RTX 4,060 Ti jump by 3.97% and 3.11%, respectively. That’s a huge increase compared to the less than 1% changes we usually see each month.
Materials are known to interact with electromagnetic fields in different ways, which reflect their structures and underlying properties. The Lyddane-Sachs-Teller relation is a physics construct that describes the relationship between a material’s static and dynamic dielectric constant (i.e., values indicating a system’s behavior in the presence or absence of an external electric field, respectively) and the vibrational modes of the material’s crystal lattice (i.e., resonance frequencies).
This construct, first introduced by physicists Lyddanne, Sachs and Teller in 1941, has since been widely used to conduct solid-state physics research and materials science studies. Ultimately, it has helped better explain and delineate the properties of various materials, which were then used to create new electronic devices.
Researchers at Lund University recently extended the Lyddane-Sachs-Teller relation to magnetism, showing that a similar relation links a material’s static permeability (i.e., its non-oscillatory response to a magnetic field) to the frequencies at which it exhibits a magnetic resonance. Their paper, published in Physical Review Letters, opens new exciting possibilities for the study of magnetic materials.
Researchers at the Arc Institute, Stanford University, and NVIDIA have developed Evo 2, an advanced AI model capable of predicting genetic variations and generating genomic sequences across all domains of life.
Testing shows that Evo 2 accurately predicts the functional effects of mutations across prokaryotic and eukaryotic genomes. It also successfully annotated the woolly mammoth genome from raw genomic sequences without a direct training reference, showing an ability to generalize function from the sequence alone.
Current genomic models struggle with predicting functional impacts of mutations across diverse biological systems, particularly for eukaryotic genomes. Machine learning approaches have demonstrated some success in modeling protein sequences and prokaryotic genomes. The complexity of eukaryotic DNA, with its long-range interactions and regulatory elements, presents more of a challenge.
Google’s X company is working on the next generation of Taara, a silicon photonics technology designed to bring fast broadband speeds to some underdeveloped areas of the world. According to statements by Taara general manager Mahesh Krishnaswamy, this light-based solution could offer unprecedented connectivity opportunities in any part of the world – and beyond.
Prototype is the first realization of a scalable, hardware-efficient quantum computing architecture based on bosonic quantum error correction.
AI-powered precision in medicine is helping to enhance the accuracy, efficiency, and personalization of medical treatments and healthcare interventions. Machine learning models analyze vast datasets, including genetic information, disease pathways, and past clinical outcomes, to predict how drugs will interact with biological targets. This not only speeds up the identification of promising compounds but also helps eliminate ineffective or potentially harmful options early in the research process.
Researchers are also turning to AI to improve how they evaluate a drug’s effectiveness across diverse patient populations. By analyzing real-world data, including electronic health records and biomarker responses, AI can help researchers identify patterns that predict how different groups may respond to a treatment. This level of precision helps refine dosing strategies, minimize side effects, and support the development of personalized medicine where treatments are tailored to an individual’s genetic and biological profile.
AI is having a positive impact on the pharmaceutical industry helping to reshape how drugs are discovered, tested, and brought to market. From accelerating drug development and optimizing research to enhancing clinical trials and manufacturing, AI is reducing costs, improving efficiency, and ultimately delivering better treatments to patients.
A Shenzhen-based humanoid robot maker said it has deployed “dozens of robots” in an electric vehicle (EV) factory where they work together on complicated tasks, offering a peek into the future of Made-in-China tech as artificial intelligence (AI) and robotics technologies are applied to empower manufacturing.
Hong Kong-listed UBTech Robotics said on Monday that it has completed a test to deploy dozens of its Walker S1 robots in the Zeekr EV factory in the Chinese port city of Ningbo for “multitask” and “multi site” operations.
According to photos and videos provided by UBTech, the human-shaped robots work as a team to complete tasks such as lifting heavy boxes and handling soft materials.
Nokia is deploying its 4G/LTE network on the moon and would be the first network to offer lunar communication system.
A 46,000-year-old worm frozen in Siberian permafrost has been brought back to life, revealing new insights into survival in extreme conditions.
Many people who have spinal cord injuries also have dramatic tales of disaster: a diving accident, a car crash, a construction site catastrophe. But Chloë Angus has quite a different story. She was home one evening in 2015 when her right foot started tingling and gradually lost sensation. She managed to drive herself to the hospital, but over the course of the next few days she lost all sensation and control of both legs. The doctors found a benign tumor inside her spinal cord that couldn’t be removed, and told her she’d never walk again. But Angus, a jet-setting fashion designer, isn’t the type to take such news lying—or sitting—down.
Ten years later, at the CES tech trade show in January, Angus was showing off her dancing moves in a powered exoskeleton from the Canadian company Human in Motion Robotics. “Getting back to walking is pretty cool after spinal cord injury, but getting back to dancing is a game changer,” she told a crowd on the expo floor.