Materials are known to interact with electromagnetic fields in different ways, which reflect their structures and underlying properties. The Lyddane-Sachs-Teller relation is a physics construct that describes the relationship between a material’s static and dynamic dielectric constant (i.e., values indicating a system’s behavior in the presence or absence of an external electric field, respectively) and the vibrational modes of the material’s crystal lattice (i.e., resonance frequencies).
This construct, first introduced by physicists Lyddanne, Sachs and Teller in 1941, has since been widely used to conduct solid-state physics research and materials science studies. Ultimately, it has helped better explain and delineate the properties of various materials, which were then used to create new electronic devices.
Researchers at Lund University recently extended the Lyddane-Sachs-Teller relation to magnetism, showing that a similar relation links a material’s static permeability (i.e., its non-oscillatory response to a magnetic field) to the frequencies at which it exhibits a magnetic resonance. Their paper, published in Physical Review Letters, opens new exciting possibilities for the study of magnetic materials.