Toggle light / dark theme

Betavolt wants to create batteries that will last a lifetime by 2025.


A Chinese startup called Betavolt has cooked up this itty-bitty nuclear battery — about the size of a little coin — which they claim can crank out electricity for 50 years straight, with no charging pit stops needed.

As the company leaps from development to the pilot stage, they’re gearing up for full-scale production and a grand entrance into the market pretty soon.

How did they create it?

This article introduces new approaches to develop early fault-tolerant quantum computing (early-FTQC) such as improving efficiency of quantum computation on encoded data, new circuit efficiency techniques for quantum algorithms, and combining error-mitigation techniques with fault-tolerant quantum computation.

Yuuki Tokunaga NTT Computer and Data Science Laboratories.

Noisy intermediate-scale quantum (NISQ) computers, which do not execute quantum error correction, do not require overhead for encoding. However, because errors inevitably accumulate, there is a limit to computation size. Fault-tolerant quantum computers (FTQCs) carry out computation on encoded qubits, so they have overhead for the encoding and require quantum computers of at least a certain size. The gap between NISQ computers and FTQCs due to the amount of overhead is shown in Fig. 1. Is this gap unavoidable? Decades ago, many researchers would consider the answer to be in the negative. However, our team has recently demonstrated a new, unprecedented method to overcome this gap. Motivation to overcome this gap has also led to a research trend that started at around the same time worldwide. These efforts, collectively called early fault-tolerant quantum computing “early-FTQC”, have become a worldwide research movement.

Japanese chip maker Rohm is collaborating with venture company Quanmatic to improve electrical die sorting (EDS) in what appears to be the first use of quantum computing to optimize a commercial-scale manufacturing process on semiconductor production lines.

After a year of effort, the two companies have announced that full-scale implementation of the probe test technology can begin in April in Rohm’s factories in Japan and overseas. Testing and validation of the prototype indicate that EDS performance can be improved by several percentage points, improving significantly productivity and profitability.

Headquartered in Kyoto, Rohm produces integrated circuits (ICs), discrete semiconductors and other electronic components. It is one of the world’s leading suppliers of silicon carbide wafers and power management devices used in electric vehicles (EVs) and various industrial applications.

The research, which was conducted on mice, demonstrates how these tiny nanomachines are propelled by urea present in urine and precisely target the tumor, attacking it with a radioisotope carried on their surface.

Bladder cancer has one of the highest incidence rates in the world and ranks as the fourth most common tumor in men. Despite its relatively low mortality rate, nearly half of bladder tumors resurface within 5 years, requiring ongoing patient monitoring. Frequent hospital visits and the need for repeat treatments contribute to making this type of cancer one of the most expensive to cure.

While current treatments involving direct drug administration into the bladder show good survival rates, their therapeutic efficacy remains low. A promising alternative involves the use of nanoparticles capable of delivering therapeutic agents directly to the tumor. In particular, nanorobots—nanoparticles endowed with the ability to self-propel within the body—are noteworthy.