Toggle light / dark theme

Scientists have previously established that light can be slowed down in certain scenarios, and a new study demonstrates a method for achieving it that promises to be one of the most useful approaches yet.

The researchers behind the breakthrough, from Guangxi University and the Chinese Academy of Sciences in China, say that their method could benefit computing and optical communication.

Light zipping through the emptiness of space moves at one speed and one speed only — 299,792 kilometers (about 186,000 miles) per second. Yet if you throw a mess of electromagnetic fields into its path, such as those surrounding ordinary matter, that extraordinary velocity starts to slow.

‘Hidden’ stars including a new type of elderly giant nicknamed an ‘old smoker’ have been spotted for the first time by astronomers.

The mystery objects exist at the heart of our Milky Way galaxy and can sit quietly for decades – fading almost to invisibility – before suddenly puffing out clouds of smoke, according to a new study published today in the Monthly Notices of the Royal Astronomical Society.

An international team of scientists led by Professor Philip Lucas, of the University of Hertfordshire, made their ground-breaking discovery after monitoring almost a billion stars in infrared light during a 10-year survey of the night sky.

Engaging in music throughout your life is associated with better brain health in older age, according to a new study published by experts at the University of Exeter.

Scientists working on PROTECT, an online study open to people aged 40 and over, reviewed data from more than a thousand adults over the age of 40 to see the effect of playing a musical instrument—or singing in a choir—on brain health. Over 25,000 people have signed up for the PROTECT study, which has been running for 10 years.

The team reviewed participants’ musical experience and lifetime exposure to music, alongside results of cognitive testing, to determine whether musicality helps to keep the brain sharp in later life.

With more than 1,000 nerve endings, human skin is the brain’s largest sensory connection to the outside world, providing a wealth of feedback through touch, temperature and pressure. While these complex features make skin a vital organ, they also make it a challenge to replicate.

By utilizing nanoengineered hydrogels that exhibit tunable electronic and thermal biosensing capabilities, researchers at Texas A&M University have developed a 3D-printed electronic skin (E-skin) that can flex, stretch and sense like human skin.

“The ability to replicate the sense of touch and integrate it into various technologies opens up new possibilities for human-machine interaction and advanced sensory experiences,” said Dr. Akhilesh Gaharwar, professor and director of research for the Department of Biomedical Engineering. “It can potentially revolutionize industries and improve the quality of life for individuals with disabilities.”

In the United States, the shortage of available organs for transplantation remains a critical issue, with over 100,000 individuals currently on the waiting list. The demand for organs, including hearts, kidneys, and livers, significantly outweighs the available supply, leading to prolonged waiting times and often, devastating consequences.

It is estimated that approximately 6,000 Americans lose their lives while waiting for a suitable donor organ every year.

Researchers at Carnegie Mellon University have developed a novel tissue engineering technique that aims to potentially bridge the gap between organ demand and availability, offering a beacon of hope.

A multinational company was scammed out of $25.6 million by hackers who fooled employees at the company’s Hong Kong branch into believing their digital recreation of its chief financial officer — as well as several other video conference participants — were real.

The hack, believed to be the first of its kind, highlights just how far deepfake technology has progressed.

As the South China Morning Post reports, scammers are believed to have used publicly available footage to create deepfake representations of the staff. Some of the fake video calls apparently only had a single human on the line, with the rest being deepfakes created by the hackers.

Cedars-Sinai Cancer investigators have discovered a protein expressed on multiple myeloma cancer cells that drives disease growth and development. The new study found that blocking part of the protein’s unique signaling pathway stops myeloma growth in culture and in laboratory mice. Their study was published in the journal Cancer Research.

The protein studied, called ephrin B2, is a powerful new target in the treatment of patients with multiple myeloma, a disease that has numerous partially effective treatments, but no cure. Based on these findings, investigators are now working on the development of therapies to target this protein in patients.

Myeloma cells grow inside a patient’s bone marrow. Unlike many types of cancer cells, multiple myeloma cells cannot live outside the patient, meaning they rely on signals from the patient’s healthy cells in order to grow. Investigators sought to determine the source of that signal as a potential way to block myeloma cells’ growth.