Toggle light / dark theme

The magnetic moment of the muon is an important precision parameter for putting the Standard Model of particle physics to the test. After years of work, the research group led by Professor Hartmut Wittig of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU) has calculated this quantity using the so-called lattice quantum chromodynamics method (lattice QCD method).

Their result agrees with the latest experimental measurements, in contrast to earlier theoretical calculations.

After the experimental measurements had been pushed to ever higher precision in recent years, attention had increasingly turned to the theoretical prediction and the central question of whether it deviates significantly from the experimental results and thus provides evidence for the existence of new physics beyond the Standard Model.

Different types of cancer have distinct molecular “fingerprints” that can be identified in the early stages of the disease with remarkable accuracy. Small, portable scanners can detect these fingerprints within just a few hours, according to a study published today in Molecular Cell.

Researchers at the Centre for Genomic Regulation (CRG) in Barcelona made this breakthrough, paving the way for non-invasive diagnostic tests that could identify various types of cancer more quickly and at earlier stages than current methods allow.

The study centers around the ribosome, the protein factories of a cell. For decades, ribosomes were thought to have the same blueprint across the human body. However, researchers discovered a hidden layer of complexity – tiny chemical modifications which vary between different tissues, developmental stages, and diseases.

Altermagnetism, a newly imaged class of magnetism, offers potential for the development of faster and more efficient magnetic memory devices, increasing operation speeds by up to a thousand times.

Researchers from the University of Nottingham have demonstrated that this third class of magnetism, combining properties of ferromagnetism and antiferromagnetism, could revolutionize computer memory and reduce environmental impact by decreasing reliance on rare elements.

Altermagnetism’s Unique Properties

Sharks differ from one another, so there are no other examples within the kingdom. Only this shark. All the same, researchers intend to analyze the Greenland shark’s DNA further and compare it to other sharks and fish to continue to unravel this mystery.

Scientists are exploring ways to prolong human life.

A new computer model can be used to detect and measure interior oceans on the ice covered moons of Uranus. The model works by analyzing orbital wobbles that would be visible from a passing spacecraft. The research gives engineers and scientists a slide-rule to help them design NASA’s upcoming Uranus Orbiter and Probe mission.

When NASA’s Voyager 2 flew by Uranus in 1986, it captured grainy photographs of large ice-covered moons. Now nearly 40 years later, NASA plans to send another spacecraft to Uranus, this time equipped to see if those icy moons are hiding liquid water oceans.

The mission is still in an early planning stage. But researchers at the University of Texas Institute for Geophysics (UTIG) are preparing for it by building a new computer model that could be used to detect oceans beneath the ice using just the spacecraft’s cameras.

The central point made in this paper is this: human-level grounded meaning in an agent can only result from directly experiencing the world, which in turn can only be possible via embodiment (coupled with ‘embrainment’ — a suitable brain architecture).

The BadBox Android malware botnet has grown to over 192,000 infected devices worldwide despite a recent sinkhole operation that attempted to disrupt the operation in Germany.

Researchers from BitSight warn that the malware appears to have expanded its targeting scope beyond no-name Chinese Android devices, now infecting more well-known and trusted brands like Yandex TVs and Hisense smartphones.