Menu

Blog

Page 1939

May 14, 2023

Team develops the world’s smallest and fastest nano-excitonic transistor

Posted by in categories: computing, nanotechnology, quantum physics

How can Marvel movie character Ant-Man produce such strong energy out of his small body? The secret lies in the transistors on his suit that amplify weak signals for processing. Transistors that amplify electrical signals in the conventional way lose heat energy and limit the speed of signal transfer, which degrades performance. What if it were possible to overcome such limitations and make a high-performance suit that is light and small but without the loss of heat energy?

A POSTECH team of Professor Kyoung-Duck Park and Yeonjeong Koo from the Department of Physics and a team from ITMO University in Russia led by Professor Vasily Kravtsov jointly developed a nano-excitonic transistor using intralayer and interlayer excitons in heterostructure-based semiconductors, which addresses the limitations of existing transistors. The research was recently published in the journal ACS Nano.

Excitons are responsible for light emission of semiconductor materials and are key to developing a next-generation light-emitting element with less heat generation and a for quantum information technology due to the free conversion between light and material in their electrically neutral states.

May 14, 2023

Robot teaches itself to play ping pong in just 90 minutes

Posted by in category: robotics/AI

Year 2021 😗


It only took the robotic arm 90 minutes of both virtual and physical training to learn to play the game.

Continue reading “Robot teaches itself to play ping pong in just 90 minutes” »

May 14, 2023

Elon Musk discusses his ‘painful’ Twitter journey in an interview with BBC

Posted by in category: Elon Musk

The ride as Twitter CEO has been a rollercoaster.

More than six months after he agreed to buy out Twitter for $44 billion, Elon Musk, the world’s second-richest person, has now confirmed what many thought was the reason for the purchase — the judge would have made him do it otherwise. Musk confirmed this during a last-minute interview with the BBC.


Wikimedia Commons.

Continue reading “Elon Musk discusses his ‘painful’ Twitter journey in an interview with BBC” »

May 14, 2023

The 5 most significant breakthroughs in quantum computing

Posted by in categories: computing, quantum physics

Ragsxl/Wikimedia Commons.

Unlike classical computers, which operate on binary bits (0 and 1), quantum computers operate on quantum bits or qubits. Qubits can exist in a state of superposition. This means that any qubit has some probability of existing simultaneously in the 0 and 1 states, exponentially increasing the computational power of quantum computers.

May 14, 2023

Domestic chores could be done by robots 40% of the time within a decade

Posted by in category: robotics/AI

Advances in AI mean robots could be doing your weekly shop by the 2030s, according to a new study — and this could help close the gender gap. Here’s how.

May 14, 2023

This Company Is Using Enzymatic DNA Synthesis To Usher In The Next Generation Of Synthetic Biology Innovation

Posted by in categories: bioengineering, biotech/medical, chemistry, computing, food

DNA writing is an aspect of our industry that I’ve been closely watching for several years because it is a critical component of so many groundbreaking capabilities, from cell and gene therapies to DNA data storage. At the SynBioBeta Conference in 2018, the co-founder of a new startup that was barely more than an idea gave a lightning talk on enzymatic DNA synthesis — and I was so struck by the technology the company was aiming to develop that I listed them as one of four synthetic biology startups to watch in 2019. I watched them, and I wasn’t disappointed.

Ansa Biotechnologies, Inc. — the Emeryville, California-based DNA synthesis startup using enzymes instead of chemicals to write DNA — announced in March the successful de novo synthesis of a 1005-mer, the world’s longest synthetic oligonucleotide, encoding a key part of the AAV vector used for developing gene therapies. And that’s just the beginning. Co-founder Dan Lin-Arlow will be giving another lightning talk at this year’s SynBioBeta Conference in just a few weeks. I caught up with him in the lead up and was truly impressed by what Ansa Biotechnologies has accomplished in just 5 years.

Synthetic DNA is a key enabling technology for engineering biology. For nearly 40 years, synthetic DNA has been produced using phosphoramidite chemistry, which facilitates the sequential addition of new bases to a DNA chain in a simple cyclic reaction. While this process is incredibly efficient and has supported countless innovative breakthroughs (a visit to Twist Bioscience’s website will quickly educate you on exciting advances in drug discovery, infectious disease research, cancer therapeutics, and even agriculture enabled by synthetic DNA) it suffers from two main drawbacks: its reliance on harsh chemicals and its inability to produce long (read: complex) DNA fragments.

May 14, 2023

B-SURE Teams Ready to Blast Off!

Posted by in categories: biological, space

Three university teams will explore and take initial steps to mitigate risks associated with manufacturing capabilities that rely on biological processes in space. The DARPA Biomanufacturing: Survival, Utility, and Reliability beyond Earth (B-SURE) program aims to address foundational scientific questions to determine how well industrial bio-manufacturing microorganisms perform in space conditions.

May 14, 2023

Researchers discover superconductive images are actually 3D and disorder-driven fractals

Posted by in categories: materials, quantum physics

Meeting the world’s energy demands is reaching a critical point. Powering the technological age has caused issues globally. It is increasingly important to create superconductors that can operate at ambient pressure and temperature. This would go a long way toward solving the energy crisis.

Advancements with superconductivity hinge on advances in . When electrons inside of quantum materials undergo a phase transition, the electrons can form intricate patterns, such as fractals. A fractal is a never-ending pattern. When zooming in on a fractal, the image looks the same. Commonly seen fractals can be a tree or frost on a windowpane in winter. Fractals can form in two dimensions, like the frost on a window, or in three-dimensional space like the limbs of a tree.

Dr. Erica Carlson, a 150th Anniversary Professor of Physics and Astronomy at Purdue University, led a team that developed theoretical techniques for characterizing the fractal shapes that these electrons make, in order to uncover the underlying physics driving the patterns.

May 14, 2023

It’s Confirmed: Babies With DNA From Three People Are Now Being Born in The UK

Posted by in categories: biotech/medical, genetics, government

Eight years after the technology was approved by government authorities, it can be reported that at least one child with DNA from three different people has been born to parents in the United Kingdom.

The announcement isn’t exactly ‘new’ knowledge, but reporters at The Guardian were able to prompt an official confirmation with a freedom of information request.

The University of Newcastle in collaboration with the Newcastle Fertility Center are pioneers in what is known as mitochondrial replacement therapy (MRT), a special form of in vitro fertilization (IVF) designed to prevent severe genetic diseases in future babies.

May 14, 2023

Nonabelions observed in quantum computer could make them less prone to errors

Posted by in categories: computing, particle physics, quantum physics

In a development that could make quantum computers less prone to errors, a team of physicists from Quantinuum, California Institute of Technology and Harvard University has created a signature of non-Abelian anyons (nonabelions) in a special type of quantum computer. The team has published their results on the arXiv preprint server.

As scientists work to design and build a truly useful quantum computer, one of the difficulties is trying to account for errors that creep in. In this new effort, the researchers have looked to anyons for help.

Anyons are quasiparticles that exist in two dimensions. They are not true particles, but instead exist as vibrations that act like particles—certain groups of them are called nonabelions. Prior research has found that nonabelions have a unique and useful property—they remember some of their own history. This property makes them potentially useful for creating less error-prone quantum computers. But creating, manipulating and doing useful things with them in a quantum computer is challenging. In this new work, the team have come close by creating a physical simulation of nonabelions in action.