Toggle light / dark theme

Water and electronics don’t usually mix, but as it turns out, batteries could benefit from some H2O.

By replacing the hazardous chemical electrolytes used in commercial batteries with water, scientists have developed a recyclable ‘water battery’ – and solved key issues with the emerging technology, which could be a safer and greener alternative.

‘Water batteries’ are formally known as aqueous metal-ion batteries. These devices use metals such as magnesium or zinc, which are cheaper to assemble and less toxic than the materials currently used in other kinds of batteries.

Despite major progress in Robotics and AI, robots are still basically “zombies” repeatedly achieving actions and tasks without understanding what they are doing. Deep-Learning AI programs classify tremendous amounts of data without grasping the meaning of their inputs or outputs. We still lack a genuine theory of the underlying principles and methods that would enable robots to understand their environment, to be cognizant of what they do, to take appropriate and timely initiatives, to learn from their own experience and to show that they know that they have learned and how. The rationale of this paper is that the understanding of its environment by an agent (the agent itself and its effects on the environment included) requires its self-awareness, which actual ly is itself emerging as a result of this understanding and the distinction that the agent is capable to make between its own mind-body and its environment. The paper develops along five issues: agent perception and interaction with the environment; learning actions; agent interaction with other agents–specifically humans; decision-making; and the cognitive architecture integrating these capacities.

We are interested here in robotic agents, i.e., physical machines with perceptual, computational and action capabilities. We believe we still lack a genuine theory of the underlying principles and methods that would explain how we can design robots that can understand their environment and not just build representations lacking meaning, to be cognizant about what they do and about the purpose of their actions, to take timely initiatives beyond goals set by human programmers or users, and to learn from their own experience, knowing what they have learned and how they did so.

Near 99 percent accuracy of bug patching in python programming language.


Repilot, a patch generation tool introduced in the ESEC/FSE’23 paper “Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair”

Some excellent food for thought face_with_colon_three


We now have everything we need to build a physics engine with infinite precision.

In this part, we’ve seen how to use the Python SymPy package to find the low-level expressions needed to create a perfect physics engine for our 2-D worlds of circles and wall. We found the expressions for the time when two objects will just touch (if they ever do). When they do touch, we found the expressions for their new velocities.

Two teams of researchers studying a galaxy through NASA’s James Webb Space Telescope have made multiple discoveries, including spotting the most distant active supermassive black hole ever found.

The teams were studying a galaxy known as GN-z11, an “exceptionally luminous” system that was formed when our 13.8 billion-year-old universe was only about 430 million years old, making it one of the youngest ever observed, NASA said in a news release. Scientists have been trying to find out what makes the distant galaxy so bright, and in doing so discovered the far-off black hole and a gas clump that could indicate rare stars.

The black hole was found by researchers from the Cavendish Laboratory and the Kavli Institute of Cosmology at the University of Cambridge in the United Kingdom using the telescope’s near-infrared camera. They determined the structure was a supermassive black hole, the largest type of black hole. It’s the most distant black hole of this size ever seen.

A medieval astronomical instrument discovered entirely by accident has turned out to be a powerful record of cross-cultural scientific collaboration.

The brass astrolabe dates back to 11th century Spain – but was subsequently engraved with annotations and amendments over the centuries, in multiple languages, as changing owners adapted and updated it for their own use.

The object is, therefore, not just a rare artifact, but almost unique: a palimpsest that records changing ideas and needs of its users as the world and context changes.