The researchers indicate that several challenges remain. The current system operates at cryogenic temperatures, which limits practical applications. While photons themselves can function at room temperature, the quantum dot requires cooling to maintain stability. Researchers are exploring alternative materials and designs that could allow operation at higher temperatures.
Additionally, the experiment used a single quantum dot, which is not easily scalable to large numbers of qubits needed for universal quantum computing. Future work will need to integrate multiple quantum dots or alternative photon sources that can be mass-produced with high consistency.
Another limitation is the reliance on superconducting detectors with an efficiency of 79%. If detection efficiency is improved beyond 93.7%, the overall system efficiency could surpass the required threshold even further. Advancements in superconducting nanowire technology suggest this is feasible in the near future.