Menu

Blog

Page 1755

Aug 28, 2023

A Hidden State Between Liquid And Solid May Have Been Found

Posted by in categories: materials, particle physics

Glass might look and feel like a perfectly ordered solid, but up close its chaotic arrangement of particles more closely resemble the tumultuous mess of a freefalling liquid frozen in time.

Known as amorphous solids, materials in this state defy easy explanation. New research involving computation and simulation is yielding clues. In particular, it suggests that, somewhere in between liquid and solid states is a kind of rearrangement we didn’t know existed.

Continue reading “A Hidden State Between Liquid And Solid May Have Been Found” »

Aug 28, 2023

How a bacterial enzyme could revolutionize aviation biofuels

Posted by in categories: sustainability, transportation

Credits: Scharfsinn86/iStock.

OleTPRN.

Aug 28, 2023

Samsung teases a jaw-dropping 256TB SSD

Posted by in categories: computing, electronics

Samsung is the world’s biggest memory chip maker, and the company consistently keeps pushing the boundaries of technology to bring cutting-edge memory products. This time, however, the tech giant has outdone itself by developing a 256TB SSD. Yes, you’ve read it correctly. This is the first 256TB SSD in the industry, and Samsung has teased the latest product at Flash Memory Summit (FMS) 2023 in California, USA.

Samsung announces the world’s first 256TB SSD

As you might imagine, Samsung is aiming this 256TB SSD primarily at hyper-scale data centers. According to Samsung, it uses the 3D QLC NAND technology and consumes approximately seven times less power than stacking eight 32TB SSDs. The tech giant hasn’t revealed any other details about this flash drive. However, considering that it is made for data centers, it most likely has an ESDFF or NGSFF form factor.

Aug 28, 2023

Researcher finds inspiration from spider webs and beetles to harvest fresh water from thin air

Posted by in categories: computing, quantum physics, sustainability

Nature is the ultimate quantum computer.


A team of researchers is designing novel systems to capture water vapor in the air and turn it into liquid.

Continue reading “Researcher finds inspiration from spider webs and beetles to harvest fresh water from thin air” »

Aug 28, 2023

Ephedrine effective for correction of hypotension during GA, even in elderly patients

Posted by in categories: biotech/medical, life extension

Hypotension is a common complication during general anesthesia associated with increased postoperative mortality and morbidity. Every episode of intraoperative hypotension, regardless of duration, is linked to the risk of acute kidney injury and cardiovascular events. The vulnerability to hemodynamic disturbances increases with age, underscoring the need for prompt interventions for elderly patients who experience hypotension during anaesthesia.

Using ephedrine resulted in a notable rise in mean arterial pressure (MAP) and cardiac output (CO). Still, no meaningful correlation with age was detected in patients aged 45 years or older. These results imply that ephedrine is reliable for managing low blood pressure during general anaesthesia, even in elderly patients, says Yuta Uemura in a recent study published in BMC Anesthesiology.

Ephedrine is a mixed α- and β-agonist vasopressor for correcting hypotension during general anaesthesia. β-responsiveness decreases with age; therefore, this study aimed to determine whether ageing would reduce the pressor effect of ephedrine on hypotension during general anaesthesia.

Aug 28, 2023

Mathematical Rule Behind Brain Cell Location Discovered

Posted by in categories: mathematics, neuroscience

HBP researchers from Forschungszentrum Jülich and the University of Cologne (Germany) have uncovered how neuron densities are distributed across and within cortical areas in the mammalian brain. They have unveiled a fundamental organisational principle of cortical cytoarchitecture: the ubiquitous lognormal distribution of neuron densities.

Numbers of neurons and their spatial arrangement play a crucial role in shaping the brain’s structure and function. Yet, despite the wealth of available cytoarchitectonic data, the statistical distributions of neuron densities remain largely undescribed. The new HBP study, published in Cerebral Cortex, advances our understanding of the organisation of mammalian brains.

The team based their investigations on nine publicly available datasets of seven species: mouse, marmoset, macaque, galago, owl monkey, baboon and human. After analysing the cortical areas of each, they found that neuron densities within these areas follow a consistent pattern – a lognormal distribution. This suggests a fundamental organisational principle underlying the densities of neurons in the mammalian brain.

Aug 28, 2023

Parkinson’s disease: Does it start in the gut?

Posted by in categories: biotech/medical, neuroscience

A recent study in mice adds to the evidence suggesting that Parkinson’s disease may actually start in the gut rather than the brain.

Aug 28, 2023

Human Cells Have “Memory” Wiped In Major Regenerative Medicine Breakthrough

Posted by in categories: biotech/medical, genetics, life extension

Scientists have found a way to reprogram human cells so that they mimic the highly plastic embryonic stem cells that have so much promise for use in regenerative medicine. By essentially wiping the cell’s “memory”, the team have created so-called induced pluripotent stem (iPS) cells, which could be used to regenerate or repair diseased tissue and organs.

IPS cells are a type of pluripotent cell that can be obtained by reprogramming mature human adult cells (“somatic” cells) into an embryonic stem cell-like state. This means that they have the capacity to differentiate into any cell of the body. They were first demonstrated in 2006, and have myriad potential biomedical and therapeutic uses, including disease modeling, drug screening, and cell-based therapies.

Despite this promise, researchers have continually hit a stumbling block that has prevented iPS cells from realizing their potential. “A persistent problem with the conventional reprograming process is that iPS cells can retain an epigenetic memory of their original somatic state, as well as other epigenetic abnormalities,” Professor Ryan Lister, lead author of a paper presenting the latest breakthrough, said in a statement.

Aug 28, 2023

Could We Transform America Into a Science-Industrial Complex?

Posted by in categories: biotech/medical, government, health, military, neuroscience, science

I’m excited to share my new opinion article for Newsweek. It advocates for transforming America from a military-industrial complex into a science-industrial complex! Give it a read!


America spends 45 percent of its discretionary federal spending on defense and wars, while around us, the world burns in ways that have nothing to do with fighting or the military. Global warming has escalated into an enormous crisis. A fifth of everyone we know will die from heart disease. And an opioid crisis is reducing the average lifespans of Americans for the first time in decades. There’s plenty of tragedy, fear, and hardship all around us, but it has nothing to do with the need to make more bombs. It does, however, have to do with science.

It seems obvious America should do something different than spend so much of its tax dollars on defense. We should consider halving that money, and directing it to science, transforming America from a military-industrial complex into a science-industrial complex. Despite science and technological progress being broadly responsible for raising the standard of living around the world over the last 50 years, America spends only 3 percent of its GDP ($205 billion) on science and medical research across the federal government. Notably, this is dramatically less than the $877 billion the U.S. will spend on defense this year.

Continue reading “Could We Transform America Into a Science-Industrial Complex?” »

Aug 28, 2023

Scientists use quantum device to slow down simulated chemical reaction 100 billion times

Posted by in categories: chemistry, computing, environmental, quantum physics, solar power

Scientists at the University of Sydney have, for the first time, used a quantum computer to engineer and directly observe a process critical in chemical reactions by slowing it down by a factor of 100 billion times.

Joint lead researcher and Ph.D. student, Vanessa Olaya Agudelo, said, It is by understanding these basic processes inside and between molecules that we can open up a new world of possibilities in , drug design, or harvesting.

Continue reading “Scientists use quantum device to slow down simulated chemical reaction 100 billion times” »