A University of Massachusetts Amherst team has made a major advance toward modeling and understanding how intrinsically disordered proteins (IDPs) undergo spontaneous phase separation, an important mechanism of subcellular organization that underlies numerous biological functions and human diseases.
IDPs play crucial roles in cancer, neurodegenerative disorders and infectious diseases. They make up about one-third of proteins that human bodies produce, and two-thirds of cancer-associated proteins contain large, disordered segments or domains. Identifying the hidden features crucial to the functioning and self-assembly of IDPs will help researchers understand what goes awry with these features when diseases occur.
In a paper published in the Journal of the American Chemical Society, senior author Jianhan Chen, professor of chemistry, describes a novel way to simulate phase separations mediated by IDPs, an important process that has been difficult to study and describe.