Do you know what they’ve discovered? This is the proton engine that Einstein predicted decades ago and that, for the first time, they’ve managed to materialize. The best part? It challenges even the laws of physics and the universe, and it’s going to decarbonize transportation.
Nuclear fusion has long been a sought-after but elusive goal for science. It involves joining atomic nuclei to release energy, the same process that occurs in the Sun and other stars. In fact, it’s a process similar to what we saw two weeks ago with the plasma engine.
Unlike nuclear fission used in current nuclear power plants—which, remember, we are highly critical of due to its lack of being an eco-friendly or renewable option—fusion offers the promise of a virtually inexhaustible and clean energy source.
An international research team from Innsbruck and Geneva has, for the first time, probed the dimensional crossover for ultracold quantum matter. In the regime between one and two dimensions, the quantum particles perceive their world as being 1D or 2D depending on the length scale on which they are probed: For short distances, their world is 1D, but it is 2D for long distances.
‘‘The reason why no such glory has ever been observed outside our solar system is that this phenomenon requires very specific conditions, said Dr. Olivier Demangeon.
A recent study published in Astronomy & Astrophysicsexamines rainbow-like light patterns known as “glories” between the dayside and nightside of the exoplanet, WASP-76b, which occurs from the interactions between the parent star’s light and perfectly uniform droplets within a planet’s atmosphere. This study holds the potential to help astronomers better understand exoplanet characteristics, as this marks the first time these “glory” patterns have been observed outside of our solar system.
While WASP-76b was discovered in 2013, astronomers have been puzzled by its peculiar behavior along the exoplanet’s terminator, which is the separation point between the dayside and nightside. For example, astronomers have noted higher amounts of light along the east part of WASP-76b compared to the west part of the exoplanet.
Is Chief Impact Officer for StartUp Health’s Alzheimer’s Moonshot (https://www.startuphealth.com/alzheimers), a new global initiative created to develop a collaborative innovation community alongside leading companies, research teams, and stakeholders, with a mission to accelerate progress in prevention, diagnosis, and management of Alzheimer’s disease and related dementias. With support from the Alzheimer’s Drug Discovery Foundation (ADDF) and Gates Ventures, StartUp Health is looking to break down silos and foster meaningful collaboration between mission-aligned founders, funders, and partners.
Dr. Ferrell also serves as Strategic Advisor, Davos Alzheimer’s Collaborative (https://www.davosalzheimerscollaborat…) which is building a global clinical trial network and technology platform that will link trial sites around the world.
Prior to these roles, Dr. Ferrell served almost three decades at multiple roles at Eli Lilly including as Global Head External Engagement, Alzheimer’s and Neurodegeneration, Chief Commercial Services Officer, and Vice President, Global Alzheimer’s Disease Platform Team Leader in Lilly BioMedicines, where her team were responsible for the late-stage development, global registration and launch of 4 late-stage assets including Solanezumab, Amyvid and AZD3293.
Dr. Ferrell received a DrPH, Public Health from Indiana University Richard M. Fairbanks School of Public Health, an MBA in General Management and a certificate in Public Management from the Stanford University Graduate School of Business, and a Bachelor of Arts degree in economics and management from DePauw University.
As the infrared space telescope continues its long-duration survey of the universe, it is creating a unique resource for future astronomers to make new discoveries.
NASA ’s NEOWISE mission has released its 10th year of infrared data – the latest in a unique long-duration (or “time-domain”) survey that captures how celestial objects change over long periods. Time-domain astronomy can help scientists see how distant variable stars change in brightness and observe faraway black holes flaring as they consume matter. But NEOWISE has a special focus on our planet’s local cosmic neighborhood, producing a time-domain infrared survey used for planetary science, with a particular emphasis on asteroids and comets.
Short for Near-Earth Object Wide-field Infrared Survey Explorer, NEOWISE is a key component of NASA’s planetary defense strategy, helping the agency refine the orbits of asteroids and comets while also estimating their size. One such example is the potentially hazardous asteroid Apophis, which will make a close approach of our planet in 2029.
NASA Administrator Bill Nelson and Japan’s Minister of Education, Culture, Sports, Science and Technology (MEXT) Masahito Moriyama have signed an agreement to advance sustainable human exploration of the Moon.
Japan will design, develop, and operate a pressurized rover for crewed and uncrewed exploration on the Moon. NASA will provide the launch and delivery of the rover to the Moon as well as two opportunities for Japanese astronauts to travel to the lunar surface.
Today, President Biden and Prime Minister Kishida also announced, “a shared goal for a Japanese national to be the first non-American astronaut to land on the Moon on a future Artemis mission, assuming important benchmarks are achieved.”