Menu

Blog

Page 1430

Mar 24, 2024

Explorative Inbetweening of Time and Space

Posted by in category: futurism

https://huggingface.co/papers/2403.

We introduce bounded generation as a generalized task to control video generation to synthesize arbitrary camera and subject motion based only on a given start and end frame.


Join the discussion on this paper page.

Mar 24, 2024

Google DeepMind Introduces SIMA: The First Generalist Artificial Intelligence AI Agent to Follow Natural-Language Instructions in a Broad Range of 3D Virtual Environments and Video Games

Posted by in categories: robotics/AI, virtual reality

😗😁😘 agi yay 😀 😍


The pursuit of artificial intelligence that can navigate and comprehend the intricacies of three-dimensional environments with the ease and adaptability of humans has long been a frontier in technology. At the heart of this exploration is the ambition to create AI agents that not only perceive their surroundings but also follow complex instructions articulated in the language of their human creators. Researchers are pushing the boundaries of what AI can achieve by bridging the gap between abstract verbal commands and concrete actions within digital worlds.

Researchers from Google DeepMind and the University of British Columbia focus on a groundbreaking AI framework, the Scalable, Instructable, Multiworld Agent (SIMA). This framework is not just another AI tool but a unique system designed to train AI agents in diverse simulated 3D environments, from meticulously designed research labs to the expansive realms of commercial video games. Its universal applicability sets SIMA apart, enabling it to understand and act upon instructions in any virtual setting, a feature that could revolutionize how everyone interacts with AI.

Continue reading “Google DeepMind Introduces SIMA: The First Generalist Artificial Intelligence AI Agent to Follow Natural-Language Instructions in a Broad Range of 3D Virtual Environments and Video Games” »

Mar 24, 2024

FCC takes aim at retailers selling signal jammers

Posted by in category: drones

FCC cracks down on retailers like Amazon allegedly selling illegal signal jammers. Investigations are underway.


Uh-oh, Amazon. Looks like the Federal Communications Commission (FCC) is not playing around when it comes to selling illegal signal jammers. The agency just went public with an investigation into Amazon and other major retailers for allegedly pushing these dodgy devices that can block your cell signal, GPS, and more.

Typically advertised as “drone deterrents” or “privacy tools”, these nefarious gadgets are specifically designed to block radio frequencies. This has serious ramifications, cutting off cellular devices and GPS units and impacting emergency communication channels.

Continue reading “FCC takes aim at retailers selling signal jammers” »

Mar 24, 2024

Gravity Measurement Based on a Levitating Magnet

Posted by in categories: energy, mapping

A new gravimeter is compact and stable and can detect the daily solar and lunar gravitational oscillations that are responsible for the tides.

Gravity measurements can help with searches for oil and gas or with predictions of impending volcanic activity. Unfortunately, today’s gravimeters are bulky, lack stability, or require extreme cooling. Now researchers have demonstrated a design for a small, highly sensitive gravimeter that operates stably at room temperature [1]. The device uses a small, levitated magnet whose equilibrium height is a sensitive probe of the local gravitational field. The researchers expect the design to be useful in field studies, such as the mapping of the distribution of underground materials.

Several obstacles have impeded the development of compact gravimeters, says Pu Huang of Nanjing University in China. Room-temperature devices generally use small mechanical oscillators, which offer excellent accuracy. However, they are made from materials that exhibit aging effects, so these gravimeters can lose accuracy over time. Much higher stability can be achieved with superconducting devices, but these require cryogenic conditions and so consume lots of power and are hard to use outdoors.

Mar 24, 2024

The Quest for a Theory of Everything — Scientists Put Einstein to the Test

Posted by in categories: quantum physics, robotics/AI

Long before Archimedes suggested that all phenomena observable to us might be understandable through fundamental principles, humans have imagined the possibility of a theory of everything. Over the past century, physicists have edged nearer to unraveling this mystery. Albert Einstein’s theory of general relativity provides a solid basis for comprehending the cosmos at a large scale, while quantum mechanics allows us to grasp its workings at the subatomic level. The trouble is that the two systems don’t agree on how gravity works.

Today, artificial intelligence offers new hope for scientists addressing the massive computational challenges involved in unraveling the mysteries of something as complex as the universe and everything in it, and Kent Yagi, an associate professor with the University of Virginia’s College and Graduate School of Arts & Sciences is leading a research partnership between theoretical physicists and computational physicists at UVA that could offer new insight into the possibility of a theory of everything or, at least, a better understanding of gravity, one of the universe’s fundamental forces. The work has earned him a CAREER grant from the National Science Foundation, one of the most prestigious awards available to the nation’s most promising young researchers and educators.

Mar 24, 2024

Quantum Computing Unleashed: Magnons Redefine Computational Boundaries

Posted by in categories: computing, quantum physics

Researchers at HZDR managed to generate wave-like excitations in a magnetic disk – so-called magnons – to specifically manipulate atomic-sized qubits in silicon carbide. This could open new possibilities for the transduction of information within quantum networks. Credit: HZDR / Mauricio Bejarano.

Researchers at HZDR have developed a new method to transduce quantum information using magnons, offering a promising approach to overcoming the challenges in quantum computing, particularly in enhancing qubit stability and communication efficiency.

Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology.

Mar 24, 2024

Lack of Focus Doesn’t Equal Lack of Intelligence — It’s Actually Proof of an Intricate Brain

Posted by in categories: employment, media & arts, neuroscience

Research conducted by Brown University’s Carney Institute for Brain Science illustrates how parts of the brain need to work together to focus on important information while filtering out distractions.

Imagine a busy restaurant: dishes clattering, music playing, people talking loudly over one another. It’s a wonder that anyone in that kind of environment can focus enough to have a conversation. A new study by researchers at Brown University’s Carney Institute for Brain Science provides some of the most detailed insights yet into the brain mechanisms that help people pay attention amid such distraction, as well as what’s happening when they can’t focus.

In an earlier psychology study, the researchers established that people can separately control how much they focus (by enhancing relevant information) and how much they filter (by tuning out distractions). The team’s new research, published in Nature Human Behaviour, unveils the process by which the brain coordinates these two critical functions.

Mar 24, 2024

One Step Closer to Unparalleled Computational Power: Spintronics Technology Meets Brain-Inspired Computing

Posted by in categories: computing, nanotechnology, neuroscience, particle physics

Researchers from Tohoku University have created a theoretical framework for an advanced spin wave reservoir computing (RC) system that leverages spintronics. This innovation advances the field toward realizing energy-efficient, nanoscale computing with unparalleled computational power.

Details of their findings were published in npj Spintronics on March 1, 2024.

Mar 24, 2024

Scientists Discover Connection Between Lack of Visual Imagination and Long-Term Memory

Posted by in categories: biotech/medical, neuroscience

When people lack visual imagination, this is known as aphantasia. Researchers from the University Hospital Bonn (UKB), the University of Bonn, and the German Center for Neurodegenerative Diseases (DZNE) investigated how the lack of mental imagery affects long-term memory.

They were able to show that changes in two important brain regions, the hippocampus, and the occipital lobe, as well as their interaction, have an influence on the impaired recall of personal memories in aphantasia. The study results, which advance the understanding of autobiographical memory, have now been published online by the specialist journal eLife.

Most of us find it easy to remember personal moments from our own lives. These memories are usually linked to vivid inner images. People who are unable to create mental images, or only very weak ones, are referred to as aphantasics. Previous neuroscientific studies have shown that the hippocampus, in particular, which acts as the brain’s buffer during memory formation, supports both autobiographical memory and visual imagination.

Mar 24, 2024

Quantum Tornado Unlocks Mysteries of Black Holes

Posted by in categories: climatology, cosmology, quantum physics

A team of scientists has successfully mimicked black hole conditions by creating a quantum vortex in superfluid helium, shedding light on gravitational interactions and quantum field theories in curved spacetimes.

Scientists have for the first time created a giant quantum vortex to mimic a black hole in superfluid helium that has allowed them to see in greater detail how analog black holes behave and interact with their surroundings.

Research led by the University of Nottingham, in collaboration with King’s College London and Newcastle University, has created a novel experimental platform: a quantum tornado. They have created a giant swirling vortex within superfluid helium that is chilled to the lowest possible temperatures. Through the observation of minute wave dynamics on the superfluid’s surface, the research team has shown that these quantum tornados mimic gravitational conditions near rotating black holes. The research has been published today in Nature.