Page 13

Apr 19, 2024

Field-Free Future: The Rise of Quantum Precision in Electronics

Posted by in categories: computing, quantum physics

Researchers at the University of Würzburg have developed a method that can improve the performance of quantum resistance standards. It’s based on a quantum phenomenon called the Quantum Anomalous Hall effect.

The precise measurement of electrical resistance is essential in the industrial production of electronics – for example, in the manufacture of high-tech sensors, microchips, and flight controls. “Very precise measurements are essential here, as even the smallest deviations can significantly affect these complex systems,” explains Professor Charles Gould, a physicist at the Institute for Topological Insulators at the University of Würzburg (JMU).

With our new measurement method, we can significantly improve the accuracy.

Apr 19, 2024

Study suggests Io’s volcanoes have been active for 4.5 billion years

Posted by in category: space

A team of geologists and planetary scientists from the California Institute of Technology, the University of California Santa Cruz, New York University, and NASA Goddard Space Flight Center reports evidence that Io’s volcanic activity has been ongoing since the beginning of the solar system. In their study, published in the journal Science, the group studied sulfur isotopes in Io’s atmosphere to determine how long the moon has been volcanically active.

Apr 19, 2024

Compact quantum light processing: New findings lead to advances in optical quantum computing

Posted by in categories: computing, quantum physics

An international collaboration of researchers, led by Philip Walther at University of Vienna, have achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work published in Science Advances represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Apr 19, 2024

Merging nuclear physics experiments and astronomical observations to advance equation-of-state research

Posted by in categories: cosmology, information science, physics

For most stars, neutron stars and black holes are their final resting places. When a supergiant star runs out of fuel, it expands and then rapidly collapses on itself. This act creates a neutron star—an object denser than our sun crammed into a space 13 to 18 miles wide. In such a heavily condensed stellar environment, most electrons combine with protons to make neutrons, resulting in a dense ball of matter consisting mainly of neutrons. Researchers try to understand the forces that control this process by creating dense matter in the laboratory through colliding neutron-rich nuclei and taking detailed measurements.

Apr 19, 2024

Technical trials for easing the (cosmological) tension

Posted by in categories: cosmology, evolution

Thanks to the dizzying growth of cosmic observations and measurement tools and some new advancements (primarily the “discovery” of what we call dark matter and dark energy) all against the backdrop of General Relativity, the early 2000s were a time when nothing seemed capable of challenging the advancement of our knowledge about the cosmos, its origins, and its future evolution.

Apr 19, 2024

Ghost particle on the scales: Research offers more precise determination of neutrino mass

Posted by in category: particle physics

What is the mass of a neutrino at rest? This is one of the big unanswered questions in physics. Neutrinos play a central role in nature. A team led by Klaus Blaum, Director at the Max Planck Institute for Nuclear Physics in Heidelberg, has now made an important contribution in “weighing” neutrinos as part of the international ECHo collaboration. Their findings are published in Nature Physics.

Using a Penning trap, it has measured the change in mass of a holmium-163 isotope with extreme precision when its nucleus captures an electron and turns into dysprosium-163. From this, it was able to determine the Q value 50 times more accurately than before. Using a more precise Q-value, possible systematic errors in the determination of the neutrino mass can be revealed.

In the 1930s, it turned out that neither the energy nor the momentum balance is correct in the radioactive beta decay of an atomic nucleus. This led to the postulate of “ghost particles” that “secretly” carry away energy and momentum. In 1956, experimental proof of such neutrinos was finally obtained. The challenge: neutrinos only interact with other particles of matter via the weak interaction that is also underlying the beta decay of an atomic nucleus.

Apr 19, 2024

Light show in living cells: New method allows simultaneous fluorescent labeling of many proteins

Posted by in category: futurism

Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge—especially in living cells, as the required fluorescent labeling had to be individually attached to each protein.

Apr 19, 2024

Unraveling water mysteries beyond Earth: Ground-penetrating radar will seek bodies of water on Jupiter

Posted by in category: space travel

Finding water on distant planets and moons in our solar system is a challenge, especially when the instrument is thousands of kilometers away from the surface, but scientists presenting at the European Geosciences Union General Assembly describe how ground-penetrating radar is used to discover bodies of water below the surface of distant planets and they are on their way to Jupiter.

Apr 19, 2024

In search for alien life, purple may be the new green

Posted by in categories: alien life, evolution, sustainability

From house plants and gardens to fields and forests, green is the color we most associate with surface life on Earth, where conditions favored the evolution of organisms that perform oxygen-producing photosynthesis using the green pigment chlorophyll a.

Apr 19, 2024

Research reveals a surprising topological reversal in quantum systems

Posted by in categories: mathematics, quantum physics

In principle, one shouldn’t compare apples to oranges. However, in topology, which is a branch of mathematics, one must do just that. Apples and oranges, it turns out, are said to be topologically the same since they both lack a hole—in contrast to doughnuts or coffee cups, for instance, which both have one (the handle in the case of the cup), and thus are topologically equal.

Page 13 of 11,022First1011121314151617Last