Toggle light / dark theme

Quantum walks, leveraging quantum phenomena such as superposition and entanglement, offer remarkable computational capabilities beyond classical methods.

These versatile models excel in diverse tasks, from database searches to simulating complex quantum systems. With implementations spanning analog and digital methods, they promise innovations in fields like quantum computing, simulation, and graph theory.

Harnessing Quantum Phenomena for Computation.

Largest brain aging study points to possible connections between diet, inflammation, and brain health.

Scientists at the Allen Institute have discovered specific types of brain cells in mice that experience significant changes as they age. They also identified a distinct “hotspot” where many of these changes are concentrated. Published today (January 1) in Nature, these findings could lead to the development of therapies aimed at slowing or managing the brain’s aging process.

NSF NOIRLab rings in the New Year with a glittering galaxyscape captured with the Department of Energy-fabricated Dark Energy Camera, mounted on the U.S. National Science Foundation Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF NOIRLab. This ultra-deep view of the Antlia Cluster reveals a spectacular array of galaxy types among the hundreds that make up its population.

Galaxy clusters are some of the largest known structures in the known universe. Current models suggest that these massive structures form as clumps of and the galaxies that form within them are pulled together by gravity to form groups of dozens of galaxies, which in turn merge to form clusters of hundreds, even thousands.

One such group is the Antlia Cluster (Abell S636), located around 130 million light-years from Earth in the direction of the constellation Antlia (the Air Pump).

Mechanical force is an essential feature for many physical and biological processes. Remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for a wide range of applications, from robotics to cellular biophysics and medicine and even to space travel. Nanoscale luminescent force sensors excel at measuring piconewton forces, while larger sensors have proven powerful in probing micronewton forces.

However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor has yet been able to make measurements over the large dynamic range needed to understand many systems.

New research on the Denali Fault reveals three geologic sites were once united in a suture zone, marking the integration of Wrangellia into North America. The study uses inverted metamorphism and monazite analysis to trace tectonic history.

New research has revealed that three sites along a 620-mile segment of Alaska’s Denali Fault were once part of a smaller, unified geologic structure, marking the final connection of two ancient land masses. Over millions of years, this structure was torn apart by tectonic forces.

The study, led by Sean Regan, an associate professor at the University of Alaska Fairbanks (UAF) Geophysical Institute and the UAF College of Natural Science and Mathematics, is featured on the cover of the December issue of Geology, the journal of the Geological Society of America.

Scientists at the Large Hadron Collider (CERN), the world’s most powerful elementary particle booster, have discovered the heaviest form of antimatter ever observed. This discovery is as significant as previous achievements at CERN, in particular the discovery of the Higgs boson and studies of B-meson decay.

The ALICE (A Large Ion Collider Experiment) has discovered an antimatter particle, antihyperhelium-4. It is the “evil twin” of another exotic particle, hyperhelium-4. This form of antimatter consists of two antiprotons, an antineutron, and an unstable antilambda particle, which in turn contains quarks.

The discovery is important for studying the extreme conditions that reigned in the Universe less than a second after the Big Bang. It also helps us understand one of the biggest mysteries of physics, the problem of baryonic asymmetry. According to the theory, matter and antimatter should have existed in equal amounts after the Big Bang, and the mutual annihilation of these particles should have produced pure energy. However, the present Universe is composed predominantly of matter, and antimatter is preserved only in small quantities. The study of hyperhelium and its antiparticle may shed light on the causes of this imbalance.

Researchers at the University of Massachusetts Amherst have developed an innovative technology inspired by the synchronization mechanism of WWI fighter aircraft, which coordinated machine gun fire with propeller movement. This breakthrough allows precise, real-time control of the pH in a cell’s environment to influence its behavior. Detailed in Nano Letters, the study opens exciting possibilities for developing new cancer and heart disease therapies and advancing the field of tissue engineering.

“Every cell is responsive to pH,” explains Jinglei Ping, associate professor of mechanical and industrial engineering at UMass Amherst and corresponding author of the study. “The behavior and functions of cells are impacted heavily by pH. Some cells lose viability when the pH has a certain level and for some cells, the pH can change their physiological properties.” Previous work has demonstrated that changes of pH as small as 0.1 pH units can have physiologically significant effects on cells.

Antimatter power and propulsion systems may finally be within out grasp!
Scientists have discovered a new much more efficient way to make positrons! Antihydrogen fuel would change everything!

Extracredit:
NASA Antimatter research!
https://ntrs.nasa.gov/api/citations/20200001904/downloads/20200001904.pdf.
MSNBC Antimatter article!
https://www.msn.com/en-us/news/technology/how-antimatter-eng…r-BB1iIvo0

Shop the Academy store at…
https://shop.spreadshirt.com/terran-space-academy.

Please help support our channel at…