A broad association of researchers from across Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley have collaborated to perform an unprecedented simulation of a quantum microchip, a key step forward in perfecting the chips required for this next-generation technology. The simulation used more than 7,000 NVIDIA GPUs on the Perlmutter supercomputer at the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy (DOE) user facility.
Modeling quantum chips allows researchers to understand their function and performance before they’re fabricated, ensuring that they work as intended and spotting any problems that might come up. Quantum Systems Accelerator (QSA) researchers Zhi Jackie Yao and Andy Nonaka of the Applied Mathematics and Computational Research (AMCR) Division at Berkeley Lab develop electromagnetic models to simulate these chips, a key step in the process of producing better quantum hardware.
“The computational model predicts how design decisions affect electromagnetic wave propagation in the chip,” said Nonaka, “to make sure proper signal coupling occurs and avoid unwanted crosstalk.”







