Toggle light / dark theme

LoGAH: Predicting 774-Million-Parameter Transformers using Graph HyperNetworks with 1/100 Parameters.

https://huggingface.co/papers/2405.

A good initialization of deep learning models is essential since it can help them converge better and faster.


Join the discussion on this paper page.

By analyzing the data from NASA’s Chandra X-ray observatory, astronomers from India and South Africa have investigated a massive galaxy cluster known as Abell 2566. They detected sloshing cold fronts in the intracluster medium (ICM) of this cluster. The finding was reported in a research paper published May 17 on the preprint server arXiv.

Researchers from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences (CAS) and collaborators from the Institute of Physics of CAS have directly observed polar Bloch points in strained ferroelectric films.

Their work is published in Nature Communications.

Based on their previous work on the polar meron lattice, the researchers considered the model of a tensile-strained ultrathin ferroelectric PbTiO3 film sandwiched by symmetric electrodes in phase-field simulations and found that the merons transform into Bloch points with the increase of the electrode thickness.

Researchers at European XFEL in Schenefeld near Hamburg have taken a closer look at the formation of the first crystallization of nuclei in supercooled liquids. They found that the formation starts much later than previously assumed. The findings could help to better understand the creation of ice in clouds in the future and to describe some processes inside the Earth more precisely.

Our is capable of demonstrating high spectral resolution and accurate reconstruction of full-Stokes polarization states in both theoretical and experimental settings. Precision detection of high-dimensional information by our photodetector, such as a two-color laser field with different polarization states or broadband reflection from a gold interface exhibiting varying states, is achieved beyond the capabilities of commercial polarimeter and spectrometer.

Additionally, this approach can be extended to imaging applications by sandwiching the film with a commercial microlens array and sensor array to realize ultra-compact high-dimensional imager, said Assistant Professor Chunqi Jin from the Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) of the Chinese Academy of Sciences.

Looking ahead, Prof. Wei Li envisions that ultra-broadband detection can be achieved by integrating broadband commercial photodetectors; the detection resolution can be further improved by using , metasurfaces, and two-dimensional materials instead of existing thin film schemes; and the detection capability can be stepped up in higher dimensions by integrating functionalities such as , and distance measurement.

Innovative infrared sensors developed by NASA increase resolution for Earth and space imaging, promising advancements in environmental monitoring and planetary science.

A newly developed infrared camera featuring high resolution and equipped with a range of lightweight filters has the potential to analyze sunlight reflected from Earth’s upper atmosphere and surface, enhance forest fire alerts, and uncover the molecular composition of other planets.

These cameras are equipped with sensitive, high-resolution strained-layer superlattice sensors, originally developed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, funded through the Internal Research and Development (IRAD) program.

New research combining experimental and computational approaches provides deeper insights into proton spin contributions from gluons.

Nuclear physicists have been tirelessly exploring the origins of proton spin. A novel approach, merging experimental data with cutting-edge calculations, has now illuminated the spin contributions from gluons—the particles that bind protons. This advancement also sets the stage for three-dimensional imaging of the proton structure.

Joseph Karpie, a postdoctoral associate at the Center for Theoretical and Computational Physics (Theory Center) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, led this groundbreaking research.

Sensory hypersensitivity in mice with the Grin2b gene mutation found in patients is related to hyperactivity of the anterior cingulate cortex (ACC) and hyperconnectivity between the ACC and other brain regions. Credit: Institute for Basic Science.

Director Kim Eunjoon states, “This new research demonstrates the involvement of the anterior cingulate cortex (ACC), which has been known for its deep association with cognitive and social functions, in sensory hypersensitivity in autism.”

The hyperactivity of the ACC was also associated with the enhanced functional connectivity between the ACC and other brain areas. It is believed both hyperactivity and the hyperconnectivity of the ACC with various other brain regions are involved with sensory hypersensitivity in Grin2b-mutant mice.