Toggle light / dark theme

(Source: Wikipedia)

Full name: Convention on the Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on their Destruction

Short name: Biological Weapons Convention (BWC)
Open for signature: April 10, 1972
Entered into force: March 26, 1975
Member states: 158
Map of member states:

Summary:

Article I: Never under any circumstances to acquire or retain biological weapons.
Article II: To destroy or divert to peaceful purposes biological weapons and associated resources prior to joining.
Article III: Not to transfer, or in any way assist, encourage or induce anyone else to acquire or retain biological weapons.
Article IV: To take any national measures necessary to implement the provisions of the BWC domestically.
Article V: To consult bilaterally and multilaterally to solve any problems with the implementation of the BWC.
Article VI: To request the UN Security Council to investigate alleged breaches of the BWC and to comply with its subsequent decisions.
Article VII: To assist States which have been exposed to a danger as a result of a violation of the BWC.
Article X: To do all of the above in a way that encourages the peaceful uses of biological science and technology.

I’ve been taking a look at an “international civil society organization” called the ETC Group. The “ETC” group is also known as the “Action Group on Erosion, Technology and Concentration”. To be honest, I can’t figure them out. Here is a summary:

“ETC Group is an international civil society organization based in Canada. We are dedicated to the conservation and sustainable advancement of cultural and ecological diversity and human rights. ETC Group supports socially responsible development of technologies useful to the poor and marginalized and we address international governance issues affecting the international community. We also monitor the ownership and control of technologies and the consolidation of corporate power.”

So they look like a somewhat standard leftist environmentalist technology oversight group. Alright.

Here is their stance on nanotechnology:

“Nanotechnology refers to the manipulation of matter on the scale of the nanometer (one billionth of a meter). Nanoscale science operates in the realm of single atoms and molecules. At present, commercial nanotechnology involves materials science (i.e. researchers have been able to make materials that are stronger and more durable by taking advantage of property changes that occur when substances are reduced to nanoscale dimensions). In the future, as nanoscale molecular self-assembly becomes a commercial reality, nanotech will move into conventional manufacturing. While nanotechnology offers opportunities for society, it also involves profound social and environmental risks, not only because it is an enabling technology to the biotech industry, but also because it involves atomic manipulation and will make possible the fusing of the biological world and the mechanical. There is a critical need to evaluate the social implications of all nanotechnologies; in the meantime, the ETC group believes that a moratorium should be placed on research involving molecular self-assembly and self-replication.”

(Bold by me.)

This is a touchy issue for researchers. At the Lifeboat Foundation we sometimes talk about the Religion of Science, which states that science must progress as quickly as possible and that any attempt to limit it is foolish and immoral. We’ve had people leave our Scientific Advisory Board when they realized that we did not subscribe to this Religion, but in fact question whether any scientist should be allowed to do just anything.

But we do not go as far as the ETC Group, which is proposing a blanket ban on all molecular self-assembly, a very large and potentially incredibly fruitful field.

What prompted me to write on the ETC Group was a news release they sent me today on synthetic biology:

ETC Group
News Release
17 October 2007
www.etcgroup.org

Syns of Omission:
Civil Society Organizations Respond to Report on Synthetic Biology
Governance from the J. Craig Venter Institute and Alfred P. Sloan
Foundation

A report released today on policy options for governance of synthetic
biology is a disappointing effort that fails to address wider
societal concerns about the rapid deployment of a powerful and
controversial new technology. Synthetic biology aims to commercialize
new biological parts, devices and living organisms that are
constructed from synthetic DNA – including dangerous pathogens.
Synthetic biologists are attempting to harness cells as tiny
factories for industrial production of chemicals, including
pharmaceuticals and fuels. ETC Group describes the synthetic biology
approach as “extreme genetic engineering.”

The report, authored by scientists and employees from the J. Craig
Venter Institute, Massachusetts Institute of Technology (MIT) and the
Center for Strategic & International Studies (Washington, D.C.) was
funded by a half-million dollar grant from the U.S.-based Alfred P.
Sloan Foundation and billed as a “project to examine the societal
implications of synthetic genomics.” The study was more than two
years in the making, but the report makes no policy recommendations
and failed to properly consult civil society. While the authors do
acknowledge possible bio-error (i.e., synbio accidents that cause
unintended harm to human health and the environment), the emphasis is
on how to impede bioterrorists “in a post-September 11 world.”

“This report is a partial consideration of governance by a partisan
group of authors,” explains Jim Thomas of ETC Group. “Its authors are
‘Synthusiasts’ – or, unabashed synthetic biology boosters – who are
primarily concerned about holding down costs and regulatory burdens
that could allegedly stymie the rapid development of the new
industry. By focusing narrowly on safety and security in a U.S.-
centric context, the report conveniently overlooks important
questions related to power, control and the economic impacts of
synthetic biology. The authors have ignored the first and most basic
questions: Is synthetic biology socially acceptable or desirable? Who
should decide? Who will control the technology, and what are its
potential impacts?”

The report’s authors include representatives from institutions that
have a vested interest in commercialization of synthetic biology.
According to the J. Craig Venter Institute, one of the three
institutions that led the study, scientists are just weeks or months
away from announcing the creation of the world’s first-ever living
bacterium with entirely synthetic DNA and a novel genome. Scientists
from the Venter Institute have already applied for patents on the
artificial microbe, and Craig Venter predicts that it could be the
first billion or trillion dollar organism. The report fails to
address issues of ownership, monopoly practices or intellectual
property claims arising from synthetic biology.

“The sixty-page report has oodles of input from a small circle of
scientists and policy ‘experts,’ but the 20-month long study fails to
incorporate views of civil society and social movements,” points out
Hope Shand, ETC Group’s Research Director. “An insular process like
the one that produced the Sloan report instills little confidence in
the results.”

The economic and technical barriers to synthetic genomics are
collapsing. Using a laptop computer, published gene sequence
information and mail-order synthetic DNA, it is becoming routine to
construct genes or entire genomes from scratch – including those of
lethal pathogens. The tools for DNA synthesis technologies are
advancing at break-neck pace – they’re becoming cheaper, faster and
widely accessible. The authors acknowledge this reality, and evaluate
several options for addressing it.

One proposal aimed at “legitimate users” of the technology – those
working in industry labs, for example – is to broaden the
responsibilities of Institutional Biosafety Committees, which were
established (in the US) to assess the biosafety and environmental
risks of proposed recombinant DNA experiments.

Edward Hammond, Director of the Sunshine Project, a biotech and
bioweapons watchdog, argues, “Institutional Biosafety Committees are
a documented disaster. IBCs aren’t up to their existing task of
overseeing genetic engineering research, much less ready to absorb
new synthetic biology and security mandates. The authors of this
report are aware of the abject failure of voluntary compliance by
IBCs, including by the Venter Institute’s own IBC. So it is very
difficult to interpret their suggestion that IBCs oversee synthetic
biology as anything but a cynical attempt to avoid effective
governance.”

Options for governing synthetic biology must not be set by the
synthetic biologists themselves – broad societal debate on synbio’s
wider implications must come first. Synthetic microbes should be
treated as dangerous until proven harmless and strong democratic
oversight should be mandatory – not optional. Earlier this year the
ETC Group recommended a ban on environmental release of de novo
synthetic organisms until wide societal debate and strong governance
are in place.

ETC and other civil society organizations have called repeatedly for
an inclusive, wide ranging public dialogue process on societal
implications and oversight options for Synthetic Biology.

The full text of “Synthetic Genomics: Options for Governance” is
available here:
http://www.jcvi.org/

ETC Group’s January 2007 report on synthetic biology, Extreme Genetic
Engineering, is available here:
http://www.etcgroup.org/en/materials/publications.html?pub_id=602

Backgrounder: Open Letter on Synthetic Biology from Civil Society,
May 2006:
http://www.etcgroup.org/en/materials/publications.html?pub_id=11

~~~

Does synthetic biology need more oversight? I believe it does. But I am hesitant to support the ETC Group in full, because some statements on their website have a Luddite flavor. For instance, I think it is infeasible to call for a moratorium on molecular self-assembly.

Another cause the ETC Group seems to be involved in is that of “Terminator” seeds — seeds that grow into plants which are sterile, forcing farmers to return to the seed market. They call this “an immoral application of biotechnology” and I’m inclined to agree.

The ETC Group also seems preoccupied with the phrase “Playing God” to scare up support a little too often for my liking.

I think that new technologies such as MNT and synthetic biology need to be regulated, but I don’t like the extremes I’m seeing: either pure boosterism, or borderline Luddism. The only organizations we can trust are those not attached to any particular extreme. The Lifeboat Foundation seems to be one.

What do you think?

Robert Freitas, Jr., Lifeboat Foundation Fellow and head of the Lifeboat Foundation’s Nanomedicine Division has won the 2007 Foresight Institute Feynman Prize in Communication.

Dr. Pearl Chin, President of the Foresight Nanotech Institute, said Freitas received the award for “pioneering the study and communication of the benefits to be obtained from an advanced nanomedicine that will be made possible by molecular manufacturing [and for having] worked to develop and communicate a path from our current technology base to a future technology base that will enable advanced nanomedicine.”

Prior to his Feynman Prize win Robert shared the Lifeboat Foundation’s 2006 Guardian Award with technology legend Bill Joy. Freitas and Joy shared the Guardian award for their many years of work on mitigating risks posed by advanced technologies.

Determining the structure of a protein called hemagglutinin on the surface of influenza B is giving researchers at Baylor College of Medicine and Rice University in Houston clues as to what kinds of mutations could spark the next flu pandemic.

This is interesting research and progress in understanding and possibly blocking changes that would lead to pandemics.

In a report that goes online today in the Proceedings of the National Academy of Sciences (PNAS), Drs. Qinghua Wang, assistant professor of biochemistry and molecular biology at BCM, and Jianpeng Ma, associate professor in the same department and their colleagues describe the actual structure of influenza B virus hemagglutinin and compare it to a similar protein on influenza A virus. That comparison may be key to understanding the changes that will have to occur before avian flu (which is a form of influenza A virus) mutates to a form that can easily infect humans, said Ma, who holds a joint appointment at Rice. He and Wang have identified a particular residue or portion of the protein that may play a role in how different types of hemagglutinin bind to human cells.

“What would it take for the bird flu to mutate and start killing people” That’s the next part of our work,” said Ma. Understanding that change may give scientists a handle on how to stymie it.

There are two main forms of influenza virus – A and B. Influenza B virus infects only people while influenza A infects people and birds. In the past, influenza A has been the source of major worldwide epidemics (called pandemics) of flu that have swept the globe, killing millions of people. The most famous of these was the Pandemic of 1918–1919, which is believed to have killed between 20 and 40 million people worldwide. It killed more people than World War I, which directly preceded it.

The Asian flu pandemic of 1957–1958 is believed to have killed as many as 1.5 million people worldwide, and the so-called Hong Kong flu pandemic of 1968–1969 is credited with as many as 1 million deaths. Each scourge was accompanied by a major change in the proteins on the surface of the virus.

The Lifeboat Foundation has the bioshield project

New Scientist reports on a new study by researchers led by Massimiliano Vasile of the University of Glasgow in Scotland have compared nine of the many methods proposed to ward off such objects, including blasting them with nuclear explosions.

The team assessed the methods according to three performance criteria: the amount of change each method would make to the asteroid’s orbit, the amount of warning time needed and the mass of the spacecraft needed for the mission.

The method that came out on top was a swarm of mirror-carrying spacecraft. The spacecraft would be launched from Earth to hover near the asteroid and concentrate sunlight onto a point on the asteroid’s surface.

In this way, they would heat the asteroid’s surface to more than 2100° C, enough to start vaporising it. As the gases spewed from the asteroid, they would create a small thrust in the opposite direction, altering the asteroid’s orbit.

The scientists found that 10 of these spacecraft, each bearing a 20-metre-wide inflatable mirror, could deflect a 150-metre asteroid in about six months. With 100 spacecraft, it would take just a few days, once the spacecraft are in position.

To deflect a 20-kilometre asteroid, about the size of the one that wiped out the dinosaurs, it would take the combined work of 5000 mirror spacecraft focusing sunlight on the asteroid for three or more years.

But Clark Chapman of the Southwest Research Institute in Boulder, Colorado, US, says ranking the options based on what gives the largest nudge and takes the least time is wrongheaded.

The proper way to go about ranking this “is to give weight to adequate means to divert an NEO of the most likely sizes we expect to encounter, and to do so in a controllable and safe manner”, Chapman told New Scientist.

The best approach may be to ram the asteroid with a spacecraft to provide most of the change needed, then follow up with a gravity tractor to make any small adjustments needed, he says.

It is good to have several options for deflection and a survey to detect the specific risks of near earth objects.



Two of Britain’s leading environmental thinkers say it is time to develop a quick technical fix for climate change. Writing in the journal Nature, Science Museum head Chris Rapley and Gaia theorist James Lovelock suggest looking at boosting ocean take-up of CO2.

Floating pipes reaching down from the top of the ocean into colder water below move up and down with the swell.

As the pipe moves down, cold water flows up and out onto the ocean surface. A simple valve blocks any downward flow when the pipe is moving upwards.

Colder water is more “productive” — it contains more life, and so in principle can absorb more carbon.

Finally some practical solutions are being introduced to mitigate global warming. The BBC article mention the US company, Atmocean, that is already testing such a system.

Read the articles from BBC or the New York Times based on the same article from Nature.

When I read about the “Aurora Generator Test” video that has been leaked to the media I wondered “why leak it now now and who benefits.” Like many of you, I question the reasons behind any leak from an “unnamed source” inside the US Federal government to the media. Hopefully we’ll all benefit from this particular leak.

Then I thought back to a conversation I had at a trade show booth I was working in several years ago. I was speaking with a fellow from the power generation industry. He indicated that he was very worried about the security ramifications of a hardware refresh of the SCADA systems that his utility was using to control its power generation equipment. The legacy UNIX-based SCADA systems were going to be replaced by Windows based systems. He was even more very worried that the “air gaps” that historically have been used to physically separate the SCADA control networks from power company’s regular data networks might be removed to cut costs.

Thankfully on July 19, 2007 the Federal Energy Regulatory Commission proposed to the North American Electric Reliability Corporation a set of new, and much overdue, cyber security standards that will, once adopted and enforced do a lot to help make an attacker’s job a lot harder. Thank God, the people who operate the most critically important part of our national infrastructure have noticed the obvious.

Hopefully a little sunlight will help accelerate the process of reducing the attack surface of North America’s power grid.

After all, the march to the Singularity will go a lot slower without a reliable power grid.

Matt McGuirl, CISSP

A new biosensor developed at the Georgia Tech Research Institute (GTRI) can detect avian influenza in just minutes. In addition to being a rapid test, the biosensor is economical, field-deployable, sensitive to different viral strains and requires no labels or reagents.

This kind of technology could be applied to real time monitoring of other diseases as well.


Photograph of the optical biosensor that is approximately 16 millimeters by 33 millimeters in size. The horizontal purple lines are the channels on the waveguide. Credit: Gary Meek

“We can do real-time monitoring of avian influenza infections on the farm, in live-bird markets or in poultry processing facilities,” said Jie Xu, a research scientist in GTRI’s Electro-Optical Systems Laboratory (EOSL)

The biosensor is coated with antibodies specifically designed to capture a protein located on the surface of the viral particle. For this study, the researchers evaluated the sensitivity of three unique antibodies to detect avian influenza virus.

The sensor utilizes the interference of light waves, a concept called interferometry, to precisely determine how many virus particles attach to the sensor’s surface. More specifically, light from a laser diode is coupled into an optical waveguide through a grating and travels under one sensing channel and one reference channel.

Researchers coat the sensing channel with the specific antibodies and coat the reference channel with non-specific antibodies. Having the reference channel minimizes the impact of non-specific interactions, as well as changes in temperature, pH and mechanical motion. Non-specific binding should occur equally to both the test and reference channels and thus not affect the test results.

An electromagnetic field associated with the light beams extends above the waveguides and is very sensitive to the changes caused by antibody-antigen interactions on the waveguide surface. When a liquid sample passes over the waveguides, any binding that occurs on the top of a waveguide because of viral particle attachment causes water molecules to be displaced. This causes a change in the velocity of the light traveling through the waveguide.

There are two sides to living as long as possible: developing the technologies to cure aging, such as SENS, and preventing human extinction risk, which threatens everybody. Unfortunately, in the life extensionist community, and the world at large, the balance of attention and support is lopsided in favor of the first side of the coin, while largely ignoring the second. I see people meticulously obsessed with caloric restriction and SENS, but apparently unaware of human extinction risks. There’s the global warming movement, sure, but no efforts to address the bio, nano, and AI risks.

It’s easy to understand why. Life extension therapies are a positive and happy thing, whereas existential risk is a negative and discouraging thing. The affect heuristic causes us to shy away from negative affect, while only focusing on projects with positive affect: life extension. Egocentric biases help magnify the effect, because it’s easier to imagine oneself aging and dying than getting wiped out along with billions of others as a result of a planetary plague, for instance. Attributional biases work against both sides of the immortality coin: because there’s no visible bad guy to fight, people aren’t as juiced up as they would be, about, say, protesting a human being like Bush.

Another element working against the risk side of the coin is the assignment of credit: a research team may be the first to significantly extend human life, in which case, the team and all their supporters get bragging rights. Prevention of existential risks is a bit hazier, consisting of networks of safeguards which all contribute a little bit towards lowering the probability of disaster. Existential risk prevention isn’t likely to be the way it is in the movies, where the hero punches out the mad scientist right before he presses the red button that says “Planet Destroyer”, but because of a cooperative network of individuals working to increase safety in the diverse areas that risks could emerge from: biotech, nanotech, and AI.

Present-day immortalists and transhumanists simply don’t care enough about existential risk. Many of them are at the same stage with regards to ideological progression as most of humanity is against the specter of death: accepting, in denial, dismissive. There are few things less pleasant to contemplate than humanity destroying itself, but it must be done anyhow, because if we slip and fall, there’s no getting up.

The greatest challenge is that the likelihood of disaster per year must be decreased to very low levels — less than 0.001% or something — because otherwise the aggregate probability computed over a series of years will approach 1 at the limit. There are many risks that even distributing ourselves throughout space would do nothing to combat — rogue, space-going AI, replicators that eat asteroids and live off sunlight, agents that pursue reproduction at the exclusion of value structures such as conscious experiences. Space colonization is not our silver bullet, despite what some might think. Relying overmuch on space colonization to combat existential risk may give us a false sense of security.

Yesterday it hit the national news that synthetic life is on its way within 3 to 10 years. To anyone following the field, this comes as zero surprise, but there are many thinkers out there who might not have seen it coming. The Lifeboat Foundation, which has saw this well in advance, set up the A-Prize as an effort to bring development of artificial life out into the open, where it should be, and the A-Prize currently has a grand total of three donors: myself, Sergio Tarrero, and one anonymous donor. This is probably a result of insufficient publicity, though.

Genetically engineered viruses are a risk today. Synthetic life will be a risk in 3–10 years. AI could be a risk in 10 years, or it could be a risk now — we have no idea. The fastest supercomputers are already approximating the computing power of the human brain, but since an airplane is way less complex than a bird, we should assume that less-than-human computing power is sufficient for AI. Nanotechnological replicators, a distinct category of replicator that blurs into synthetic life at the extremes, could be a risk in 5–15 years — again, we don’t know. Better to assume they’re coming sooner, and be safe rather than sorry.

Once you realize that humanity has lived entirely without existential risks (except the tiny probability of asteroid impact) since Homo sapiens evolved over 100,000 years ago, and we’re about to be hit full-force by these new risks in the next 3–15 years, the interval between now and then is practically nothing. Ideally, we’d have 100 or 500 years of advance notice to prepare for these risks, not 3–15. But since 3–15 is all we have, we’d better use it.

If humanity continues to survive, the technologies for radical life extension are sure to be developed, taking into account economic considerations alone. The efforts of Aubrey de Grey and others may hurry it along, saving a few million lives in the process, and that’s great. But if we develop SENS only to destroy ourselves a few years later, it’s worse than useless. It’s better to overinvest in existential risk, encourage cryonics for those whose bodies can’t last until aging is defeated, and address aging once we have a handle on existential risk, which we quite obviously don’t. Remember: there will always be more people paying attention to radical life extension than existential risk, so the former won’t be losing much if you shift your focus to the latter. As fellow blogger Steven says, “You have only a small fraction of the world’s eggs; putting them all in the best available basket will help, not harm, the global egg spreading effort.”

For more on why I think fighting existential risk should be central for any life extensionist, see Immortalist Utilitarianism, written in 2004.

A point on human extinction risk analysis.

To look at existential risk rationally requires that we maintain a cool, detached perspective. It’s somewhat hard to think of how this might be done, although watching videos of planetary destruction could actually help! As a detective needs to look at a few crime scenes before he can get experienced and move beyond being a simple gumshoe, existential risk analysts need to view simulations and thought experiments of planetary destruction before they can consider it without flinching. Because it is impossible to acquire experience of human extinction risk, as by definition no one is alive afterwards, we have to settle for simulations.

The reaction of many educated adults to extinction risk discussions reminds me of the reaction kids in my Middle School health classes had to the mention of the word “penis”: adolescent giggling. If I were to get onstage in front of a random audience and start talking about existential risk when they didn’t expect it, using words like “planetary destruction”, they’d probably start giggling, at least in their minds. Obviously, we have a way to mature as a society until we can look calmly at the prospect of our own demise. By resolving to do so yourself, you can be a part of the solution instead of the problem.

Last week a blogger for the Houston Chronicle, Eric Berger, covered my post on immortality and extinction risk, and the immaturity of most of the comments received is expected but also telling. One reader writes that we should hire Will Smith to save the world, another writes: “I don’t worry about this sort of thing, because when it happens, I’ll be dead and won’t care.” Just like how you get to see someone’s true self a little better when they’re a tad tipsy, we get to see what people really think of extinction risk analysis by their anonymous comments on a big website. When people are on the record, they aren’t likely to make pithy comments like those on the blog, but they might be thinking them, and what they say in public is likely to be a dressed-up version of these sentiments. For instance, there’s an article that appeared in The Mercury on the 22nd of April in 2003, “Disastronomer Royal: More Apocalyptic then the Pope”, which exemplifies the reaction to those who take the prospect of extinction risk seriously, referring to Martin Rees in this case. Extinction denialist articles are not hard to find on the Internet: just Google them.

Ideally, existential risk analysis should be getting hundreds of millions of dollars in funding, as the study of global warming does today. Until there are planetary immune systems in place that can respond so quickly and comprehensively that the likelihood of terminal disaster is reduced to practically nothing, existential risk mitigation should be the number one priority of the human species. And the first step is for individuals, such as yourself, to look at the prospect of human extinction in a serious way.