Toggle light / dark theme

The main ways of solving the Fermi Paradox are:
1) They are already here (at least in the form of their signals)
2) They do not disseminate in the universe, do not leave traces, and not send signals. That is, they do not start a shock wave of intelligence.
3) The civilizations are extremely rare.
Additional way of thinking is 4): we are unique civilization because of observation selection
All of them have a sad outlook for global risk:
In the first case, we are under threat of conflict with superior aliens.
1A) If they are already here, we can do something that will encourage them to destroy us, or restrict us. For example, turn off the simulation. Or start the program of probes-berserkers. This probes cold be nanobots. In fact it could be something like “Space gray goo” with low intelligence but very wide spreading. It could even be in my room. The only goal of it could be to destroy other nanobots (like our Nanoshield would do). And so we will see it until we create our own nanobots.
1b) If they open up our star system right now and, moreover, focused on total colonization of all systems, we are also will fight with them and are likely to lose. Not probable.
1c) If a large portion of civilization is infected with SETI-virus and distributes signals, specially designed to infect naive civilizations — that is, encourage them to create a computer with AI, aimed at the further replication by SETI channels. This is what I write in the article Is SETI dangerous? http://www.proza.ru/texts/2008/04/12/55.html
1d) By the means of METI signal we attract attention of dangerous civilization and it will send to the solar system a beam of death (probably commonly known as gamma-ray burst). This scenario seems unlikely, since for the time until they receive the signal and have time to react, we have time to fly away from the solar system — if they are far away. And if they are close, it is not clear why they were not here. However, this risk was intensely discussed, for example by D. Brin.
2. They do not disseminate in space. This means that either:
2a) Civilizations are very likely to destroy themselves in very early stages, before it could start wave of robots replicators and we are not exception. This is reinforced by the Doomsday argument – namely the fact that I’m discovering myself in a young civilization suggests that they are much more common than the old. However, based on the expected rate of development of nanotechnology and artificial intelligence, we can start a wave of replicators have in 10–20 years, and even if we die then, this wave will continue to spread throughout the universe. Given the uneven development of civilizations, it is difficult to assume that none of them do not have time to launch a wave of replicators before their death. This is possible only if we a) do not see an inevitable and universal threat looming directly on us in the near future, b) significantly underestimate the difficulty of creating artificial intelligence and nanoreplicators. с) The energy of the inevitable destruction is so great that it manages to destroy all replicators, which were launched by civilization — that is it is of the order of a supernova explosion.
2b) Every civilization sharply limit itself — and this limitation is very hard and long as it is simple enough to run at least one probe-replicator. This restriction may be based either on a powerful totalitarianism, or the extreme depletion of resources. Again in this case, our prospects are quite unpleasant. Bur this solution is not very plausible.
3) If civilization are rare, it means that the universe is much less friendly place to live, and we are on an island of stability, which is likely to be an exception from the rule. This may mean that we underestimate the time of the future sustainability of the important processes for us (the solar luminosity, the earth’s crust), and most importantly, the sustainability of these processes to small influences, that is their fragility. I mean that we can inadvertently break their levels of resistance, carrying out geo-engineering activities, the complex physics experiments and mastering space. More I speak about this in the article: “Why antropic principle stopped to defend us. Observation selection and fragility of our environment”. http://www.scribd.com/doc/8729933/Why-antropic-principle-sto…vironment– See also the works of M.Circovic on the same subject.
However, this fragility is not inevitable and depends on what factors were critical in the Great filter. In addition, we are not necessarily would pressure on this fragile, even if it exist.
4) Observation selection makes us unique civilization.
4a. We are the first civilization, because any civilization which is the first captures the whole galaxy. Likewise, the earthly life is the first life on Earth, because it would require all swimming pools with a nutrient broth, in which could appear another life. In any case, sooner or later we will face another first civilization.
4b. Vast majority of civilizations are being destroyed in the process of colonization of the galaxy, and so we can find ourselves only in the civilization which is not destroyed by chance. Here the obvious risk is that those who made this error, would try to correct it.
4c. We wonder about the absence of contact, because we are not in contact. That is, we are in a unique position, which does not allow any conclusions about the nature of the universe. This clearly contradicts the Copernican principle.
The worst variant for us here is 2a — imminent self-destruction, which, however, has independent confirmation through the Doomsday Argument, but is undermine by the fact that we do not see alien von Neuman probes. I still believe that the most likely scenario is a Rare earth.


Paul J. Crutzen

Although this is the scenario we all hope (and work hard) to avoid — the consequences should be of interest to all who are interested in mitigation of the risk of mass extinction:

“WHEN Nobel prize-winning atmospheric chemist Paul Crutzen coined the word Anthropocene around 10 years ago, he gave birth to a powerful idea: that human activity is now affecting the Earth so profoundly that we are entering a new geological epoch.

The Anthropocene has yet to be accepted as a geological time period, but if it is, it may turn out to be the shortest — and the last. It is not hard to imagine the epoch ending just a few hundred years after it started, in an orgy of global warming and overconsumption.

Let’s suppose that happens. Humanity’s ever-expanding footprint on the natural world leads, in two or three hundred years, to ecological collapse and a mass extinction. Without fossil fuels to support agriculture, humanity would be in trouble. “A lot of things have to die, and a lot of those things are going to be people,” says Tony Barnosky, a palaeontologist at the University of California, Berkeley. In this most pessimistic of scenarios, society would collapse, leaving just a few hundred thousand eking out a meagre existence in a new Stone Age.

Whether our species would survive is hard to predict, but what of the fate of the Earth itself? It is often said that when we talk about “saving the planet” we are really talking about saving ourselves: the planet will be just fine without us. But would it? Or would an end-Anthropocene cataclysm damage it so badly that it becomes a sterile wasteland?

The only way to know is to look back into our planet’s past. Neither abrupt global warming nor mass extinction are unique to the present day. The Earth has been here before. So what can we expect this time?”

Read the entire article in New Scientist.

Also read “Climate change: melting ice will trigger wave of natural disasters” in the Guardian about the potential devastating effects of methane hydrates released from melting permafrost in Siberia and from the ocean floor.

Peter Garretson from the Lifeboat Advisory Board appears in the latest edition of New Scientist:

“IT LOOKS inconsequential enough, the faint little spot moving leisurely across the sky. The mountain-top telescope that just detected it is taking it very seriously, though. It is an asteroid, one never seen before. Rapid-survey telescopes discover thousands of asteroids every year, but there’s something very particular about this one. The telescope’s software decides to wake several human astronomers with a text message they hoped they would never receive. The asteroid is on a collision course with Earth. It is the size of a skyscraper and it’s big enough to raze a city to the ground. Oh, and it will be here in three days.

Far-fetched it might seem, but this scenario is all too plausible. Certainly it is realistic enough that the US air force recently brought together scientists, military officers and emergency-response officials for the first time to assess the nation’s ability to cope, should it come to pass.

They were asked to imagine how their respective organisations would respond to a mythical asteroid called Innoculatus striking the Earth after just three days’ warning. The asteroid consisted of two parts: a pile of rubble 270 metres across which was destined to splash down in the Atlantic Ocean off the west coast of Africa, and a 50-metre-wide rock heading, in true Hollywood style, directly for Washington DC.

The exercise, which took place in December 2008, exposed the chilling dangers asteroids pose. Not only is there no plan for what to do when an asteroid hits, but our early-warning systems — which could make the difference between life and death — are woefully inadequate. The meeting provided just the wake-up call organiser Peter Garreston had hoped to create. He has long been concerned about the threat of an impact. “As a taxpayer, I would appreciate my air force taking a look at something that would be certainly as bad as nuclear terrorism in a city, and potentially a civilisation-ending event,” he says.”

Read the entire article at New Scientist. Read the NASA NEO report “Natural Impact Hazard Interagancy Deliberate Planning Exercise After Action Report”.

Nature News reports of a growing concern over different standards for DNA screening and biosecurity:

“A standards war is brewing in the gene-synthesis industry. At stake is the way that the industry screens orders for hazardous toxins and genes, such as pieces of deadly viruses and bacteria. Two competing groups of companies are now proposing different sets of screening standards, and the results could be crucial for global biosecurity.

“If you have a company that persists with a lower standard, you can drag the industry down to a lower level,” says lawyer Stephen Maurer of the University of California, Berkeley, who is studying how the industry is developing responsible practices. “Now we have a standards war that is a race to the bottom.”

For more than a year a European consortium of companies called the International Association of Synthetic Biology (IASB) based in Heidelberg, Germany, has been drawing up a code of conduct that includes gene-screening standards. Then, at a meeting in San Francisco last month, two of the leading companies — DNA2.0 of Menlo Park, California, and Geneart of Regensburg, Germany — announced that they had formulated a code of conduct that differs in one key respect from the IASB recommendations.”

Read the entire article on Nature News.

Also read “Craig Venter’s Team Reports Key Advance in Synthetic Biology” from JCVI.

I recently began to worry that something/someone, some field, force, disease, prion, virus, bad luck and/or natural causes could threaten and perhaps destroy the most valuable entity in the universe, an entity more valuable than life itself. Consciousness. What good is life extension without conscious awareness? What is consciousness?

We know the brain works a lot like a computer, with neuron firings and synapses acting like bit states and switches. Brain-as-computer works very well to account for sensory processing, control of behavior, learning and other cognitive functions. These functions may in some cases be non-conscious, and other times associated with conscious experience and control. Scientists seek the distinction – the essential feature, or trick for consciousness.

Some suggest there is no trick, consciousness emerges as a by-product of cognitive computation among neurons. Others say we don’t know, that consciousness may indeed require some feature related to, but not quite the same as neuron-to-neuron cognition.

In either case, humans and other creatures could in principle become devoid of consciousness while maintaining cognitive behaviors, appearing more-or-less normal to outside observers. Such hypothetical non-conscious behaving entities are referred to in literature, films and philosophical texts as ‘zombies’. Philosopher David Chalmers introduced the philosophical zombie, a test case for whether or not consciousness is distinct from cognitive neurocomputation.

I’ve studied and researched consciousness for over 35 years, and work as an anesthesiologist, erasing and restoring consciousness several times per day for surgery. Patients under anesthesia are not zombies. They lack consciousness but also lack cognition. On the other hand, for a very brief period after first emerging from anesthesia following surgery, my patients seem like zombies, behaving purposely but blankly. Like in the old song “She’s not there” by…..The Zombies.

During a routine surgery recently, one of the nurses was talking about a book called ‘Patient Zero’ in which a terrorist group turned people into zombies the terrorists were then able to control. I later discovered there exists an entire genre of zombie terror books and films (‘Invasion of the body snatchers’ being perhaps the original). Could it be possible? How could we protect ourselves from consciousness-snatchers who want to turn us into zombies? Well, we need to understand what consciousness is (but, so do ‘they’).

We do know consciousness correlates with a particular coherent EEG gamma synchrony. Somehow selectively blocking EEG brain-wide coherence while sparing neuron-to-neuron computation and cognition could conceivably erase consciousness. But I would bet on an even more subtle and profound feature or trick. For example I personally believe (with Sir Roger Penrose) that consciousness involves quantum computations in microtubules inside brain neurons.

Microtubules are the major structural component of the neuronal cytoskeleton whose disruption is an essential feature of Alzheimers disease. Microtubules dynamically organize intra-neuronal and synaptic activities, conduct signals, have collective vibrational and electromagnetic modes and quite possibly mesoscopic quantum states. Motor proteins and biomolecular agents traverse and interact with microtubules.

I became obsessed with microtubules in medical school in the early 1970s. Their cylindrical lattice structure of ‘tubulin’ protein subunits looked to me like a computing switching circuit. Through the 1980s, colleagues and I developed models of microtubule information processing in which states of tubulin subunits were bits interacting with lattice neighbor tubulins. With about 107 (10 to the seventh) tubulins per neuron switching at 10^−9 seconds, we calculated a potential for 1016 operations per second in each neuron. This was, and remains unpopular in AI/Singularity circles because it potentially pushes the goalpost for brain capacity significantly. Recent evidence has shown collective microtubule excitations at 10^−7 seconds (rather than the 10^−9 seconds we assumed), indicating a neuronal information capacity of ‘only’ 1014 operations per second.

But here’s the really good news. Microtubules self-assemble. With proper conditions tubulins polymerize into microtubules, and with associated proteins into networks of cross-linked microtubules. In principle, tubulin and other necessary proteins can be genetically mass-produced, and then self-assemble into large arrays. If microtubules process molecular-scale information (quantum or classical), appropriate arrays of microtubules could serve as a repository of consciousness — a ‘Lifeboat’.

These could be useful. Evil forces aside, consciousness-snatchers include aging, disease and death. In 1987 I wrote a book about microtubule information processing based entirely on classical (non-quantum) processes. The brief, concluding chapter considered arrays of microtubules as orbiting consciousness Lifeboats. It foreshadowed the Singularity, and in retrospect also applies to quantum processes. The chapter follows below. And we should understand consciousness not just to preserve it, but to enhance it in any way possible.

From
Ultimate computing: Biomolecular consciousness and nanotechnology
Elsevier, 1987
http://www.quantumconsciousness.org/ultimatecomputing.html

11 The Future of Consciousness

Nanotechnology may enable the dream of Mind/Tech merger to materialize. At long last, debates about the nature of consciousness will move from the domain of philosophy to large scale experiments. The visions of consciousness interfacing with, or existing within, computers or mind piloted robots expressed by Moravec, Margulis, Sagan and Max Headroom could be realized. Symbiotic association of replicative nanodevices and cytoskeletal networks within living cells could not only counter disease processes, but lead to exchange of information encoded in the collective dynamic patterns of cytoskeletal subunit states. If these are indeed the roots of consciousness, a science fiction-like deciphering and transfer of mind content may become possible. One possible scenario could utilize a small window in a specific brain region. Hippocampal temporal lobe, a site where memories enter and where electromagnetic radiation from outside the skull penetrates most readily and harmlessly, is one possible area where information distributed throughout the brain may perhaps be accessed and manipulated. Techniques such as laser interferometry, electroacoustical probes scanned over brain surfaces, or replicative nanoprobes immunotargeted to key hippocampal tubulins, MAPs, and other cytoskeletal components might be developed to perceive and transmit the content of consciousness.

What technological device would be capable of receiving and housing the information emanating from some 1015 tubulin subunits changing state some 109 times per second? One possibility is a customized array of nanoscale automata, perhaps utilizing superconducting materials. Another possibility is a genetically engineered array of some 1015 tubulin subunits (or many more) assembled into parallel tensegrity arrays of interconnected microtubules, and other cytoskeletal structures. Current and near future genetic engineering capabilities should enable isolation of genes responsible for a specific individual’s brain cytoskeletal proteins, and reconstitution in an appropriate medium. Thus the two evident sources of mind content (heredity and experience) may be eventually reunited in an artificial consciousness environment. A polymerized cytoskeletal array would be highly unstable and dependent on biochemical, hormonal, and pharmacological maintenance of its medium. Precise monitoring and control of cytoskeletal consciousness environments may become an important new branch of anesthesiology. Polymerization of cell-free cytoskeletal lattices would be limited in size (and potential intellect) due to gravitational collapse. Possible remedies might include hybridizing the cytoskeletal array by metal deposition, symbiosis with synthetic nanoreplicators, or placement of the cytoskeletal array in a zero gravity environment. Perhaps future consciousness vaults will be constructed in orbiting space stations or satellites. People with terminal illnesses may choose to deposit their mind in such a place, where their consciousness can exist indefinitely, and (because of enhanced cooperative resonance) in a far greater magnitude. Perhaps many minds can comingle in a single large array, obviating loneliness, but raising new sociopolitical issues. Entertainment, earth communication, and biochemical mood and maintenance can be supplied by robotics, perhaps leading to the next symbiosis-robotic space voyagers (shaped like centrioles?) whose intelligence is derived from cytoskeletal consciousness.

Yes, this is science fiction. Will it become reality like so much previous science fiction has? Probably not precisely as suggested; but if past events are valid indicators, the future of consciousness may be even more outrageous.

50 years ago Herman Khan coined the term in his book “On thermonuclear war”. His ideas are still important. Now we can read what he really said online. His main ideas are that DM is feasable, that it will cost around 10–100 billion USD, it will be much cheaper in the future and there are good rational reasons to built it as ultimate mean of defence, but better not to built it, because it will lead to DM-race between states with more and more dangerous and effective DM as outcome. And this race will not be stable, but provoking one side to strike first. This book and especially this chapter inspired “Dr. Strangelove” movie of Kubrick.
Herman Khan. On Doomsday machine.

Abstract:

President Obama disbanded the President’s Council on Bioethics after it questioned his policy on embryonic stem cell research. White House press officer Reid Cherlin said that this was because the Council favored discussion over developing a shared consensus. This column lists a number of problems with Obama’s decision, and with his position on the most controversial bioethical issue of our time.

Bioethics and the End of Discussion

In early June, President Obama disbanded the President’s Council on Bioethics. According to White House press officer Reid Cherlin, this was because the Council was designed by the Bush administration to be “a philosophically leaning advisory group” that favored discussion over developing a shared consensus. http://www.nytimes.com/2009/06/18/us/politics/18ethics.html?_r=2

Shared consensus? Like the shared consensus about the Mexico City policy, government funding of Embryonic Stem Cell Research for new lines, or taxpayer funded abortions? All this despite the fact that 51% of Americans consider themselves pro-life? By allowing publicly-funded Embryonic Stem Cell Research only on existing lines, President Bush made a decision that nobody was happy with, but at least it was an honest compromise, and given the principle of second effect, an ethically acceptable one.

President Obama will appoint a new bioethics commission, one with a new mandate and that “offers practical policy options,” Mr. Cherlin said.

Practical policy options? Like the ones likely to be given by Obama’s new authoritative committee to expediently promote the license to kill the most innocent and vulnerable? But that is only the start. As the baby boomers bankrupt Social Security, there will be a strong temptation to expand Obama’s mandate to include the aging “useless mouths”. Oregon and the Netherlands have already shown the way—after all, a suicide pill is much cheaper than palliative care, and it’s much more cost-effective to kill patients rather than care for them. (http://www.euthanasia.com/argumentsagainsteuthanasia.html)

Evan Rosa details many problems with Obama’s decision to disband the Council (http://www.cbc-network.org/research_display.php?id=388), but there are additional disturbing implications:

First, democracies are absolutely dependent on discussion. Dictators have always suppressed free discussion on “sensitive” subjects because it is the nature of evil to fear criticism. This has been true here in the United States, too—in the years leading up to the Civil War, Southern senators and representatives tried to squelch all discussion on slavery. Maybe their consciences bothered them.

Second, no matter how well-meaning the participants may be, consensus between metaphysically opposed parties is impossible in some matters (such as the humanity of a baby a few months before he or she is born, the existence of God, consequentialist vs. deontological reasoning, etc.). The only way to get “consensus” in such situations is by exercising the monopoly of force owned by the government.

Third, stopping government-sponsored discussion on bioethics sets a dangerous precedent for the ethics surrounding nanotechnology. There are numerous ethical issues that nanotechnology is raising, and will continue to raise, that desperately require significant amounts of detailed discussion and deep thinking.

Tyrants begin by marginalizing anyone who disagrees with them, calling them hate-mongering obstructionists (or worse). In addition, they will use governmental power to subdue any who dare oppose their policies.

The details of the dismissal of the Council clearly shows this tendency, though the Council members are not acting very subdued. As one of them supposedly put it, “Instead of meeting at seminars, now we’ll be meeting on Facebook.”

On March 9, Obama removed restrictions on federal funding for research on embryonic stem cell lines derived by means that destroy human embryos.

On March 25, ten out of the eighteen members of the Council questioned Obama’s policy (http://www.thehastingscenter.org/Bioethicsforum/Post.aspx?id=3298).

In the second week of June, Obama fired them all.

Could it be that Obama doesn’t want discussion? We can see what happens if someone gives him advice that he doesn’t want.

Oprah Winfrey’s favorite physician Dr. Mehmet Oz, told her and Michael Fox that “the stem cell debate is dead” because “the problem with embryonic stem cells is that [they are]… very hard to control, and they can become cancerous” (http://www.oprah.com/media/20090319-tows-dr-oz-brain). Besides, induced pluripotent cells can become embryonic, thereby negating the very difficult necessity of cloning.

So “harvesting” embryonic stem cells is not only ethically problematic (i.e. wrong), but it is also scientifically untenable. Obama supports it anyway.

Maybe he could fire Oprah.

Tihamer Toth-Fejel, MS
General Dynamics Advanced Information Systems
Michigan Research and Development Center

Artificial brain ’10 years away’

By Jonathan Fildes
Technology reporter, BBC News, Oxford

A detailed, functional artificial human brain can be built within the next 10 years, a leading scientist has claimed.

Henry Markram, director of the Blue Brain Project, has already simulated elements of a rat brain.

He told the TED Global conference in Oxford that a synthetic human brain would be of particular use finding treatments for mental illnesses.

Around two billion people are thought to suffer some kind of brain impairment, he said.

“It is not impossible to build a human brain and we can do it in 10 years,” he said.

“And if we do succeed, we will send a hologram to TED to talk.”

‘Shared fabric’

The Blue Brain project was launched in 2005 and aims to reverse engineer the mammalian brain from laboratory data.

In particular, his team has focused on the neocortical column — repetitive units of the mammalian brain known as the neocortex.

Neurons

The team are trying to reverse engineer the brain

“It’s a new brain,” he explained. “The mammals needed it because they had to cope with parenthood, social interactions complex cognitive functions.

“It was so successful an evolution from mouse to man it expanded about a thousand fold in terms of the numbers of units to produce this almost frightening organ.”

And that evolution continues, he said. “It is evolving at an enormous speed.”

Over the last 15 years, Professor Markram and his team have picked apart the structure of the neocortical column.

“It’s a bit like going and cataloguing a bit of the rainforest — how may trees does it have, what shape are the trees, how many of each type of tree do we have, what is the position of the trees,” he said.

“But it is a bit more than cataloguing because you have to describe and discover all the rules of communication, the rules of connectivity.”

The project now has a software model of “tens of thousands” of neurons — each one of which is different — which has allowed them to digitally construct an artificial neocortical column.

Although each neuron is unique, the team has found the patterns of circuitry in different brains have common patterns.

“Even though your brain may be smaller, bigger, may have different morphologies of neurons — we do actually share the same fabric,” he said.

“And we think this is species specific, which could explain why we can’t communicate across species.”

World view

To make the model come alive, the team feeds the models and a few algorithms into a supercomputer.

“You need one laptop to do all the calculations for one neuron,” he said. “So you need ten thousand laptops.”

Computer-generated image of a human brain

The research could give insights into brain disease

Instead, he uses an IBM Blue Gene machine with 10,000 processors.

Simulations have started to give the researchers clues about how the brain works.

For example, they can show the brain a picture — say, of a flower — and follow the electrical activity in the machine.

“You excite the system and it actually creates its own representation,” he said.

Ultimately, the aim would be to extract that representation and project it so that researchers could see directly how a brain perceives the world.

But as well as advancing neuroscience and philosophy, the Blue Brain project has other practical applications.

For example, by pooling all the world’s neuroscience data on animals — to create a “Noah’s Ark”, researchers may be able to build animal models.

“We cannot keep on doing animal experiments forever,” said Professor Markram.

It may also give researchers new insights into diseases of the brain.

“There are two billion people on the planet affected by mental disorder,” he told the audience.

The project may give insights into new treatments, he said.

The TED Global conference runs from 21 to 24 July in Oxford, UK.


The Singularity Institute will be holding the fourth annual Singularity Summit in New York in October, featuring talks by Ray Kurzweil, David Chalmers, and Peter Thiel.

New York, NY (PRWEB) July 17, 2009 — The fourth annual Singularity Summit, a conference devoted to the better understanding of increasing intelligence and accelerating change, will be held in New York on October 3–4 in Kaufmann Hall at the historic 92nd St Y. The Summit brings together a visionary community to further dialogue and action on complex, long-term issues that are transforming the world.

Participants will hear talks from cutting-edge researchers and network with strategic business leaders. The world’s most eminent experts on forecasting, venture capital, emerging technologies, consciousness and life extension will present their unique perspectives on the future and how to get there. “The Singularity Summit is the premier conference on the Singularity,” says Ray Kurzweil, inventor of the CCD flatbed scanner and author of The Singularity is Near. “As we get closer to the Singularity, each year’s conference is better than the last.”

The Singularity Summit has previously been held in the San Francisco Bay Area, where it has been featured in numerous publications including the front page of the San Francisco Chronicle. It is hosted by the Singularity Institute, a 501©(3) nonprofit devoted to studying the benefits and risks of advanced technologies.

Select Speakers

* Ray Kurzweil is the author of The Singularity is Near (2005) and co-founder of Singularity University, which is backed by Google and NASA. At the Singularity Summit, he will present his theories on accelerating technological change and the future of humanity.

* Dr. David Chalmers, director of the Centre for Consciousness at Australian National University and one of the world’s foremost philosophers, will discuss mind uploading — the possibility of transferring human consciousness onto a computer network.

* Dr. Ed Boyden is a joint professor of Biological Engineering and of Brain and Cognitive Sciences at MIT. Discover Magazine named him one of the 20 best brains under 40.

* Peter Thiel is the president of Clarium, seed investor in Facebook, managing partner of Founders Fund, and co-founder of PayPal.

* Dr. Aubrey de Grey is a biogerontologist and Director of Research at the SENS Foundation, which seeks to extend the human lifespan. He will present on the ethics of this proposition.

* Dr. Philip Tetlock is Professor of Organizational Behavior at the Haas School of Business, University of California, Berkeley, and author of Expert Political Judgement: How Good Is It?

* Dr. Jürgen Schmidhuber is co-director of the Dalle Molle Institute for Artificial Intelligence in Lugano, Switzerland. He will discuss the mathematical essence of beauty and creativity.

* Dr. Gary Marcus is director of the NYU Infant Language Learning Center, and professor of psychology at New York University and author of the book Kludge.

See the Singularity Summit website at http://www.singularitysummit.com/.

The Singularity Summit is hosted by the Singularity Institute for Artificial Intelligence.

MediaX at Stanford University is a collaboration between the university’s top technology researchers and companies innovating in today’s leading industries.

Starting next week, MediaX is putting on an exciting series of courses in The Summer Institute at Wallenberg Hall, on Stanford’s campus.

Course titles that are still open are listed below, and you can register and see the full list here. See you there!

————–

July 20: Social Connectedness in Ambient Intelligent Environments, Clifford Nass and Boris deRuyter

July 23: Semantic Integration, Carl Hewitt

August 3–4: Social Media Collaboratory, Howard Rheingold

August 5–6: New Metrics for New Media: Analytics for Social Media and Virtual Worlds, Martha Russell and Marc Smith

August 7: Media and Management Bridges Between Heart and Head for Impact, Neerja Raman

August 10–11: Data Visualization: Theory and Practice, Jeff Heer, David Kasik and John Gerth

August 12: Technology Transfer for Silicon Valley Outposts, Jean Marc Frangos, Chuck House

August 12–14: Collaborative Visualization for Collective, Connective and Distributed Intelligence, Jeff Heer, Bonnie deVarco, Katy Borner

————-