Toggle light / dark theme

A valuable paper by Jason Matheny of the University of Maryland is “Reducing the Risk of Human Extinction”. The abstract is as follows:

In this century a number of events could extinguish humanity. The probability of these events may be very low, but the expected value of preventing them could be high, as it represents the value of all future lives. We review the challenges to studying human extinction risks and, by way of example, estimate the cost-effectiveness of preventing extinction-level asteroid impacts.

Continue reading it here.

A better atomic force microscope from Japan:

Credit: Oscar Custance, Osaka University

“A new type of atomic force microscope (AFM) has been developed that can “fingerprint” the chemical identity of individual atoms on a material’s surface. This is one step ahead of existing AFMs, which can only detect the position of atoms. The device determines local composition and structure using a precise calibration method, and can even be used to manipulate specific atomic species. The team demonstrated their “fingerprinting” technique by using an atomic force microscope (AFM) to distinguish atoms of tin (blue) and lead (green) deposited on a silicon substrate (red).”

Here is the associated article (subscription req’d).

Here’s the graphene transistor everyone’s been talking about:

One atom thick, 50 atoms wide. Here is an article going over the advance. It states that the transistors are not likely to be completely ready by 2025, but this estimate seems conservative.

Scientists from Duke recently achieved the new size record for a programmable synthetic nanostructure:

These DNA grids were formed by hierarchial self-assembly. The article on the development states, that the “grid-like structures consist of components that can be independently modified to create arbitrary patterns for different purposes”.

Reminds me of CRN’s cubic micron DNA structure ideas.

The trillion-dollar question is, “when will these advances lead to freely programmable, self-replicating molecular assemblers?” Some scientists are betting on the 2015–2020 timeframe, others say “never”.

NASA estimates the cost to find at least 90 percent of the 20,000 potentially hazardous asteroids and comets by 2020 would be about $1 billion, according to a report NASA will release later this week. It would cost $300 million if a asteroid locating telescope was piggybacked on another vehicle. The report was previewed Monday at a Planetary Defense Conference in Washington.

The agency is already tracking bigger objects, at least 3,300 feet in diameter, that could wipe out most life on Earth, much like what is theorized to have happened to dinosaurs 65 million years ago. But even that search, which has spotted 769 asteroids and comets — none of which is on course to hit Earth — is behind schedule. It’s supposed to be complete by the end of next year.

A cheaper option would be to simply piggyback on other agencies’ telescopes, a cost of about $300 million, also rejected, Johnson said.

“The decision of the agency is we just can’t do anything about it right now,” he added.

Earth got a scare in 2004, when initial readings suggested an 885-foot asteroid called 99942 Apophis seemed to have a chance of hitting Earth in 2029. But more observations showed that wouldn’t happen. Scientists say there is a 1-in-45,000 chance that it could hit in 2036.

They think it would mostly likely strike the Pacific Ocean, which would cause a tsunami on the U.S. West Coast the size of the devastating 2004 Indian Ocean wave.

John Logsdon, space policy director at George Washington University, said a stepped-up search for such asteroids is needed.

“You can’t deflect them if you can’t find them,” Logsdon said. “And we can’t find things that can cause massive damage.”

Lifeboat has an asteroid shield project

Here is a piece of news from early last month, via CNN:

WASHINGTON (AP) — Hackers briefly overwhelmed at least three of the 13 computers that help manage global computer traffic Tuesday in one of the most significant attacks against the Internet since 2002.

Experts said the unusually powerful attacks lasted for hours but passed largely unnoticed by most computer users, a testament to the resiliency of the Internet.

Behind the scenes, computer scientists worldwide raced to cope with enormous volumes of data that threatened to saturate some of the Internet’s most vital pipelines.

Experts said the hackers appeared to disguise their origin, but vast amounts of rogue data in the attacks were traced to South Korea.

The attacks appeared to target UltraDNS, the company that operates servers managing traffic for Web sites ending in “org” and some other suffixes, experts said. Company officials did not immediately return telephone calls from The Associated Press.

Among the targeted “root” servers that manage global Internet traffic were ones operated by the Defense Department and the Internet’s primary oversight body.

It is not likely that the South Korean government or a large company had anything to do with the attack. The crime was probably perpetrated by a relatively small hacker group, which underscores the potential for asymmetric cyberwarfare. I’m happy that the federal government has many people on the full-time job of defending cybersecurity.

From Physorg.com:

With a typical launch cost for a spaceship around $20 million, it’s difficult to practically conceive of a space industry beyond federally funded agencies. Nevertheless, many people believe that expanding space travel—whether for research purposes, entertainment, or even colonization—is not impractical. Bridging the economic hurdle may be technologies such as the maglev launch assist. According to an analysis, the cost of launching payloads into the low earth orbit with maglev may be achieved with only hundreds of dollars per pound (John Olds and Peter Bellini).

Most recently, researchers in a group including Wenjiang Yang and his colleagues from the Beijing University of Aeronautics and Astronautics and the Chinese Academy of Sciences have investigated the possibility of the “Maglifter,” a maglev launch assist vehicle originally proposed in the 1980s. In this system, a spaceship would be magnetically levitated over a track and accelerated up an incline, lifting off when it reaches a velocity of 1,000 km/hr (620 miles/hr). The main cost-saving areas would come from reduced fuel consumption and the reduced mass of the spaceship.

“Magnetic levitation is a promising technology for future space transportation,” Yang told PhysOrg.com. “The most expensive part of space missions to low-Earth orbit is the first few seconds—getting off the ground.”

Obviously, cost-to-orbit is highly relevant to Lifeboat’s push to build a space ark. Some might find it hard to imagine how a non-governmental organization has even a chance of building a space station in the foreseeable future, but that’s because cost-to-orbit has historically been over $10,000 per pound. With new launch technologies like maglev-assist, the cost could come down to hundreds per pound or below. Dropping costs in launch technologies are something that we can expect to accelerate once it really gets started — especially with the growing interest in private space travel.

Take a look at the Lifeboat Foundation EM Launch Competition!

“The importance of the space sector can be emphasized by the number of spacecrafts launched. In the period from 1957 till 2005, 6376 spacecraft have been launched at an average of 133 per year. The has been a decrease in the number of spacecrafts launched in the recent years with 78 launched in 2005. Of the 6378 launches, 56.8% were military spacecrafts and 43.2 were civilian. 245 manned missions have been launched in this period. 1674 communication or weather satellites were also launched. The remaining spacecraft launches has been exploration missions.”

Read the entire report here (requires free registration)

Graduate student (University of Alabama Huntsville) Blake Anderton wrote his master’s thesis on “Application of Mode-locked lasers to asteroid characterization and mitigation.” Undergraduate Gordon Aiken won a prize at a recent student conference for his poster and presentation “Space positioned LIDAR system for characterization and mitigation of Near Earth Objects.” And members of the group are building a laser system “that is the grandfather of the laser that will push the asteroids,” Fork said.

Anderton’s mode locked lasers could characterize asteroids up to 1 AU away (1.5 × 10 to the 11 meters). Arecibo and other radar observatories can only detect objects up to 0.1 AU away, so in theory a laser would represent a vast improvement over radar.

A one page powerpoint describes their asteroid detection and deflection approach About 12 of the 1AU detection volumes (around the sun in the asteroid belt) would be needed to cover the main areas for near earth asteroids.

40KW femtosecond lasers could deflect an asteroid the size of Apophis (320meters, would hit with 880 megaton force) given one year of illumination and an early start in the trajectory.

Asteroid shields are a project of the Lifeboat Foundation

There are 67 kilowatt solid state lasers and modular laser systems & mirrors for reflecting lasers to achieve more laser power from smaller modules


The Ballistic Missile Early Warning Radar System (BMEWS) at Fylingdales, U.K.

The ongoing debate on the proposed missile defense shield in Europe is heating up. Poland and the Czech Republic are among the possible sites and the UK is now showing interest in supporting the missile shield. Fears over the destabilising effects of such a shield was confirmed by a Russian general who said that they would target the system.

Vladimir Putin, Russia’s president, said America would trigger an “inevitable arms race” if it deployed interceptors in Europe to knock ballistic missiles out of the sky. A senior Russian general rumbled that Russian missiles would target any interceptors in eastern Europe. Poland’s prime minister told his people that Russia was trying to “scare” them. The Czech foreign minister (a prince with a splendid moustache) complained of Russian “blackmail”.

“The aim is to break ground on a European site in 2008, and for its interceptors to become operational in 2012. This week the Polish and Czech prime ministers said they were keen on hosting the missile-defence sites. That is a change: talks with the Poles have dragged on for years, thanks to elaborate Polish demands for things such as extra missile defences for their own country. Yet both Mr Blair and his Polish rivals face objections from three sources: from Russia, from many of their own voters and from fellow European leaders.”

Source: “Missile-defence systems: Expect Fireworks”, Economist.

“In 2003, the U.K. agreed to allow the U.S. to upgrade radar stations at the Fylingdales Royal Air Force Base in northern England, one of the steps to allowing the missile shield. At the time, then-Defense Secretary Geoff Hoon said the U.K. would keep its options open about Britain taking the U.S. missile shield.”

Source: “Blair Wants Part of U.S. Missile Shield Based in U.K.”, Bloomberg.

Read more about the RAF Fylingdales base from Wikipedia

Like the Lifeboat Foundation, The Bulletin of Atomic Scientists is an organization formed to address catastrophic technological risks. In catastrophic risk management, vision and foresight are essential. You take at technological, social, and political trends which are happening today — for example, steps towards mechanical chemistry, increasing transparency, or civil atomic programs — and brainstorm with as many experts as possible about what these trends indicate about what is coming 5, 10, or 20 years down the road. Because catastrophic risk management is a long-term enterprise, one where countermeasures are ideally deployed before a threat has even materialized, the further and more clearly you try to see into the future, the better.

Traditionally, The Bulletin has focused on the risk from nuclear warfare. Lately, they have expanded their attention to all large-scale technological risks, including global warming and future risks from emerging technologies. However, the language and claims used on their website show that the organization’s members are only just beginning to get informed about the emerging technologies, and the core of their awareness still lies with the nuclear issue.

From The Bulletin’s statement regarding their decision to move the clock 5 minutes to midnight, from the “emerging technologies” section specifically:

The emergence of nanotechnology — manufacturing at the molecular or atomic level — presents similar concerns, especially if coupled with chemical and biological weapons, explosives, or missiles. Such combinations could result in highly destructive missiles the size of an insect and microscopic delivery systems for dangerous pathogens.

“Highly destructive missiles the size of an insect”? Depressingly, statements like this are a red flag that the authors and fact-checkers at The Bulletin are poorly informed about nanotechnology and molecular manufacturing. To my knowledge, no one in the entire defense research industry has ever proposed creating highly destructive missiles the size of an insect. Highly destructive missiles the size of an insect are impossible for the same reason that meals in a pill are impossible — chemical bonds only let you pack so much energy into a given space. We cannot improve the energy density of explosives like we can improve the speed of computers or the resolution of satellite imagery. There can be incremental improvements, yes, but suggesting that nanotechnology has something to do with highly destructive missiles the size of insects is not just dubious from the point of view of physics, but particularly embarassing because it seems to have been made up from scratch, and was missed by everyone in the organization that reviewed the statement.

The general phrasing of the statement makes it seem like the scientists that wrote it are still stuck in the way of thinking that says “molecular manufacturing has to do with molecules, and molecules are small, so the products of molecular manufacturing will be small”. This is also the bias frequently seen displayed by the general media, although early products based on nanotechnology (not molecular manufacturing), including stainless pants and sunscreen, also subtly direct the popular perception of nanotech. It’s natural to think that nanotechnology, and therefore, molecular manufacturing, means small. However, this natural tendency is flawed. We should recall that the world’s largest organisms, up to 6,600 tons in weight, were manufactured by the molecular machines called ribosomes.

Molecular manufacturing (MM) would greatly boost manufacturing throughput and lower the cost of large products. While some associate MM with smallness, it is better thought of in connection with size and grandeur. Although microscopic killing machines built by MM will definitely become a risk by 2015–2020, the greatest risk will come from the size, performance, and sheer quantity of products. Because a nanofactory would need to be able to output its own weight in product in less than a 12 or so hours or it wouldn’t have been developed in the first place (scaling up from a single molecular manipulator to many trillions requires 33 or so doublings — which could take a long time if the product cycle is not measured in hours), these factories, given raw materials and energy, could produce new factories at an exponential rate. Assuming a doubling time of 12 hours, a 100 kg-size tabletop nanofactory could be used to produce 819,200 kg worth of nanofactory in only a week. As long as the nanofactories can support their own weight and be supplied with adequate matter and energy, they can be made almost arbitrarily large. Minimal labor would be necessary because the manufacturing components are so small, they must be automated to work at all. Regulations and structural challenges from excess height can be circumvented by fabricating nanofactories that are long and wide rather than tall and fragile. Once created, these factories could be programmed to produce whatever products are technologically possible with the tools at hand — at the very least, products at least as sophisticated as the nanofactories themselves. Unscrupulous governments could use the technology to mass produce missiles, helicopters, tanks, and entirely new weapons, as long as their engineers are capable of designing diamondoid versions of these products. Their rate of production, and quality of hardware, would outclass that of non-nano-equipped nations by many orders of magnitude.

Because unregulated, exponentially replicating molecular manufacturing units would create a severe threat to global security, it seems prudent to regulate them with care. Restrictions should be placed on what products can be manufactured and in what quantity and quality. Just as permits and inspections are required to operate industrial machinery, restrictions should be placed on industrial-scale molecular manufacturing. In some cases, preexisting regulatory infrastructure will be sufficient. In others, we’ll need to augment or expand the purview of historical regulations and customize them to address the specific challenges that MM represents.

Further Reading:

30 Essential Nanotechnology Studies
Lifeboat Foundation NanoShield
Nanotechnology Category on Accelerating Future

From Yahoo News:

RIYADH (Reuters) — Saudi Arabia, the world’s biggest oil exporter and a key U.S. ally, said on Wednesday that the kingdom does not see any obstacle to cooperating with Russia on developing a nuclear energy program.

“There is no obstacle to cooperate with Russia on… nuclear energy,” Foreign Minister Prince Saud al-Faisal told a news conference.

Analysts said the plan by Sunni bastion Saudi Arabia is a warning shot to Shi’ite Iran that it could enter the regional arms race and start developing nuclear capability.

Russian President Vladimir Putin said on Monday during a visit to Saudi Arabia that his country would consider helping the kingdom with a possible atomic energy program.

“On nuclear energy, there was a (Russian) contact with the kingdom and the Gulf Cooperation Council,” he said when asked if Saudi Arabia and Russia had made any agreements.

Saudi Arabia and fellow GCC members Qatar, Bahrain, Oman, Kuwait and the United Arab Emirates, said in December they would study embarking on a joint civil atomic program.

The announcement by the GCC, a loose economic and political alliance, raised concern of a regional arms race with analysts saying the Arab bloc wanted to match Iran’s nuclear program.

The question of whether GCC members can develop civil nuclear power without spinning off a nuclear weapons program is a controversial one. Most analysts see nuclear programs as a threat to world peace, because the temptation of developing weapons is so great. As we saw in the recent deal with North Korea, nuclear programs can be used to bribe other countries for free energy. This may actually increase the incentive to start nuclear programs. Russia blames the United States for kicking off a global arms race, but seems to be participating in that arms race by offering nuclear support to GCC nations. A solution that would make everyone happy would be the development of thorium nuclear reactors, which can produce electricity without making the sort of enriched uranium that can be used in a bomb. Thorium reactors are a 50 year old technology, well within the reach of these countries, given Russian assistance.