Toggle light / dark theme

800 out of 12.000 boat people have drowned in 2 months time in unappreciated heroism. One billion out of 7 billion people go hungry every day. Science no longer yearns for the unknown. Seen against this backdrop, CERN’s refusal for 3 years to allow for a scientific safety conference in the face of a comparable risk to the whole planet (to be shrunk to 2 cm in a few years’ time with a probability of about ten percent) fits in perfectly.

Are human beings the “ten percent killers” by nature? I doubt it. A corrupt system is almost everywhere active in society, or so it appears. The past fate of Lampsacus hometown could be taken for a sign. The hometown of all persons on the Internet is an option for 17 years but remains a non-topic. This even though it is quite affordable and would boost the nation or continent or institution that installs it. And in addition would do a lot for a healthy global economy.

What has all of this to do with CERN? I do not know — except that CERN invented the Internet. But there is the more recent fact that they are hostile to new scientific results and more specifically are unwilling to admit a discussion of the safety of their – by now for more than a year running at increasing luminosity — mega-experiment. I admit that I still hope that my results as to an apocalyptic danger residing in the latter can be relativized. But so far, no one tried to achieve this goal. And no one on the planet dares take up the issue.

In ordinary life one calls such behavior cowardice: Disappearing from sight when asked to respond. A very human attitude. Especially so when a monolithic giant like one of the few legally immune world institutions is involved.

Forgive me that I am still hopeful that this issue is going to be taken up by the world’s media such that either the planet is saved or – if it turns out that it was never in jeopardy – rationality is re-established. For human beings are the only animals capable of rationality – of seeing with the eyes of the other and doing so with their hearts involved. For as a young child, they invented the idea of benevolence – the suspicion that mom wants them to be happy so they turned the table and wanted mom to be happy. The inexplicable light of the day and the gift of the present now are part of this human discovery of mutual gratefulness.

Take care, everyone, and thanks for the fish. The fish of rationality. That CERN is allowed to interrupt operation until the safety issue is clarified. I wish them all the good luck of the world.

Otto E. Rossler, chaos researcher, University of Tubingen (For J.O.R., May 11, 2011)

I am at a loss: I have a scientific proof that can save everyone’s life but no one listens.

The proof implies that CERN — the European Research Council – currently attempts to shrink the earth to 2 cm in a runaway process consummated in about 5 years’ time and effective with a probability of about 8 percent, if the LHC experiment is not stopped immediately.

The scientific safety conference already demanded three years ago got recently requested from the German government by a Cologne court. But the globe’s media keep silent (except for the tiny “ET-Journal,” Volume 16, pages 58–59, 2011).

Maybe the court and the present writer are both crazy? But even if you assume this, is the danger not appreciably reduced thereby as long as the offered proof stays unaddressed. (The proof has three elements: Telemach – a new black-hole theorem involving Time, length, mass and charge -, a quantum theorem protecting the superfluid cores of neutron stars, and a chaos theorem yielding exponential growth inside earth.)

Can one of my readers name a scientist ready to shoulder the job of disproving my result (so far a few tried but none remained in the ring)? Or advise me how to get the benefit of the doubt of the planet at large? Or advise me why I should stop this desperate campaign?

Otto E. Rossler, University of Tubingen (For J.O.R., May 10, 2011)

Please, declare that I am wrong if I say that my proof stands undefeated that the citizens of the U.S. are currently subject to an attempt on their lives by the European Nuclear Research Council.

(The probability that the planet will be shrunk to 2 cm in a few years’ time is of the order of 8 percent if the LHC experiment is not halted immediately, according to my calculations based on Einstein’s equivalence principle published three years ago.)

I desire nothing more than a refutation but no scientist dares come forward so far. Ask Stephen Hawking.

Only your authority can cut through the Gordian knot. I subject myself to your judgment.

Otto E. Rossler, chaos researcher, University of Tubingen, Germany (For J.O.R., May 3, 2011)

… while Europe continues to suppress the risk incurred by it regarding the lives of all children on the planet. The cover-up of this proven fact must end and CERN halt the LHC experiment.

May I dare ask the people of Japan to rally behind the Cologne Administrative Court who publicly called for the scientific safety conference denied by Europe for 3 years?

Otto E. Rössler, chaos researcher, University of Tübingen (May 1st, 2011, for J.O.R.)

Dear Lifeboat Foundation Family & Friends,

Here’s an executive summary of the thesis I posted a few days ago.

Abstract: This brief communique tables evolutionarily stable strategy for the problem of sustainable economic development on earth and other earth-like planets. In order to accomplish the task at hand with so few words, we hit the ground running with an exploration of Bertrand Russell’s conjecture that economic power is a derivative function of military power. Next we contextualize the formidable obstacle presented by teleological thinking. Third, we introduce Truly Non-cooperative Games – axioms and complimentary negotiation models developed to analyze a myriad of politico-economic problems, including the problem of sustainable economic development. Here we derive, contextualize, and utilize The Principle of Relative Insularity (a unified theory of value which unites economics, astrophysics, and biology) to solve the problem at hand: In the light of evolution, Popper’s solution to Hume’s problem of induction, and within a simplified game-theoretical context, we find winning economic development strategy for Islands and Relatively Insular States (RIS) = Maximum Ecological Preservation, and Globalized Economic Military Superpowers (GEMS) = Maximum Economic Development. Surprisingly, perhaps, we also discover these inherently opposed development strategies represent a strategic equilibrium, and thus evolutionarily stable strategy at the global level. Finally, we offer a synthetic narrative in which we explore several crucial logical implications that follow from our findings, especially as they relate to central banking, monetary policy, investment strategy, leisure activity selection, political ideals, and the ancient wisdom of the Second Amendment to the United States Constitution.

Thanks for reading!

The LHC experiment at the European Nuclear Research Center is presently being continued in defiance of a public proof of danger — that the planet will be shrunk to a diameter of 2 cm in perhaps 5 years’ time with a probability of up to 8 percent if the experiment goes on. The continuation occurs in defiance of the recent public appeal by a court to allow for a scientific safety conference first.

No public voice on the planet acknowledges this critical situation – even though simultaneously another survival error unfolds before everyone’s eyes. The perhaps most cynical situation of history. What has gone awry?

Is “rational science” a myth that was imperceptibly abandoned? The scientific members of CERN cannot possibly believe that they are acting in accord with the rules of rational science, one feels. Nevertheless they are being held in high esteem across the planet – so high in fact that the world’s media appear to voluntarily observe the first global press curfew. How can the manifest irrationality – if it is one – be explained?

The reason has to do with opinion power – who would argue with 8.000 scientists? But suppose the mentioned proof is really on the table (as it is to the best of my knowledge): What would be the explanation, then? One would be forced to conclude that outdated science, if held fast to, is not science any more but rather the opposite: the most dangerous enemy of the future. We know this from medieval times where dogmatism took over under the mantle of orthodoxy (in the good sense). Did we re-arrive there again with the burden of a much more dangerous arsenal of instruments, acquired in a preceding period of rationalism?

Pursuing this tantalizing thesis could be a rewarding pastime in the last years of a doomsday-conscious planetary society once it will be too late to do anything about it. The present period of “after-science” will then be diagnosed as being characterized by a global intolerance toward novel scientific results — an intolerance profound enough to let the whole planet prefer dying to accepting any qualitative (“revolutionary”) scientific advance as necessary to uphold the premises of rationality.

A single individual is unlikely to have enough experience to spot such an overall trend in the broad scientific endeavor should it really exist. Has science been abandoned at more than one point, and so for years or decades in a row so that the diagnosed attempted suicide would be a symptom in a broader development?

In the following, I will attempt to put together a few examples which jointly could support such a diagnosis. It will be of interest to learn how others see this, and how we might be able to create a consciousness of what is happening here, so as to have some theoretical fun in our “last hour” on the planet (to quote Sir Martin Rees) in the worst case. Or to put it more hopefully: Being joint victims of a spirit of anti-progress, the planet’s citizens may take an interest in learning about an individual’s subjective experience with other cases in point. In this way, other “specialists for non-specialization” might feel encouraged to contribute their own experiences — so that at the last moment a new blossoming of an outdated spirit of progress can perhaps be triggered on the planet. The following personal selection of ten points might, in spite of its subjective character, prove to be “better than nothing” as a starting point.

1) Following the downfall of the potentially deadly East-West competition (which apart from this inherent risk also had some good sides to it like the development of space travel), the most striking example of “anti-progress,” if I may use this term, was perhaps the historical refusal by planetary protagonists to install “Lampsacus hometown of all persons on the Internet.” Vannevar Bush, Stafford Beer and Francois Mittérand had already had the same idea before the age of the Internet. Ezer Weizmann was then ready to do it jointly with Saudi Arabia, but got deposed at the worst possible moment. All other leaders and governments and churches and big foundations waived the opportunity. No billionaire loved his fellow human beings enough to give them this affordable present, and not a single country wanted to reap the immense fruits (in terms of friendship and economic connections) gained from installing this science-born and science-promoting progress on the planet, a progress necessary to make the planet a bearable place for every inhabitant. An information-science based progress which, by the way, had been made a practical option by CERN’s inventing the Internet (Tim Berners-Lee worked there). A whole new science – “the pyramid”- representing every knowledge on all levels of resolution and making all connections across levels, got consciously rejected. Only some maverick kids who invented some sub-elements of Lampsacus soon after (like Google, wiki and iPud) could not be prevented from giving a few crumbs to the world, a fact for which most everyone has grown grateful ever since.

2) A second example of manifest “anti-progress” is in my eyes the strange refusal by the therapeutic profession to discuss or apply the acoustic-smile therapy of primary autism. This harmless idea was proposed in outline in 1968 and in detail in 1975 by the present writer (who apologizes again for the use of personal experience). The apparent reason, in retrospect, for this resilience of a whole profession was the prediction made that the therapy would be so effective as to work also with non-human mirror-competent lovely young creatures (a phenomenon subsequently called “galactic export”). This heart-moving trait apparently went too much against the grain of contemporaneous science (imagine it would work: what a catastrophe to conservatism). In this understandable way, a new science based on contributions by many workers (like René Spitz, John Bowlby, Selma Fraiberg, Konrad Lorenz, John Lilly and Gregory Bateson) proved empirically unwelcome for decades. This may or may not teach us something about our present context.

3) Example number three would be the tacit abandonment of project “Lunatown” by Japan and all cooperating countries for almost two decades already. If it is true that humanity has caught a deadly virus with the invention of systematic science (as can be argued but as I try to counter-caricature here with the thesis that it is only the corruption of the spirit of science that is deadly), then this first step in a “lifeboat” type expansion of humankind across other celestial bodies is the only safe chance for its sustainable future. As brave scientist Stephen Hawking independently proposed in books written for his young grandson.

4) The fourth example of science having ceased to reign without anyone’s noticing is cosmology — a topic that most everyone on the planet finds fascinating. Edwin Hubble, the 1928 discoverer of cosmological redshift — that grandiose phenomenon of a systematic frequency change of light with distance which explains why the night sky is dark -, got his Nobel prize denied because he did not believe in the ad-hoc explanation of a “big bang.” Fritz Zwicky’s timely 1929 discovery of the correct explanation – a “dynamical friction” suffered by any fast particle traversing a churning cauldron of randomly moving gravitation centers — got rejected owing to an error in his calculation. The latter got effectively corrected 15 years later, by Subrahmanyan Chandrasekhar, in a more limited astronomical context (the braking of fast-moving stars in a globular star cluster as is necessary in order to explain the longevity of these oldest known structures in the universe). Nevertheless “dynamical friction” stayed in-applied to cosmology for many more decades (owing to chemical friction between the protagonists?). It no doubt got re-discovered several times since; the late Ilya Prigogine was open to it, for example. The Tubingen school’s belated arrival at it, 74 years after Zwicky, got apparently never quoted. Why the resistance? The false ad-hoc-explanation of an exploding bomb (“big bang”) proves virtually in-erasable after its having been married with other falsities — like “nonbaryonic dark matter” and an alleged “cosmic” origin of the galactic background radiation (whose first discovery by Charles Guillaume in 1896 (as I learned from Andre Koch Assis) got totally suppressed following its re-discovery half a century later by Wilson and Penzias who mistook it for a fingerprint of the putative primordial fire ball). Amazingly, even quantitative numbers — the famous “13.7 billion years” for a finite cosmic age — could be erroneously extracted from the most beautiful quantitative data. I do hope that you will get a bit angry with me at this point — so as to feel ready for a debate. In this way we will understand better how excusable CERN really is with its refusal to argue with a competing much smaller school. And that scientific truth is too serious a business for majority decisions to be accepted. I forgot to add that a numerical proof of the simplest case of the underlying new sister discipline to statistical mechanics (cryodynamics) was published by a hard-working coworker last year.

5) The fifth example has to do with the many-cuts theory of quantum mechanics. The latter got initiated by Einstein’s writing a letter to a 12-year old boy named Hugh Everett in 1943. The “spooky action at a distance” first discovered (if doubted) by Einstein 8 years before, would then be explained 14 years later by that very boy. But the pertinent crucial experiment – proving that Everett is right in case of a positive outcome — which was proposed independently many times since the 1980s (by Susan Feingold, Roger Penrose, the Tubingen group and Anton Zeilinger, to mention only the short list), was never done by ESA to which it had been proposed. The reason was in the last instance, so I believe, that the to be expected further confirmation of the Bell inequalities also here (in a relativistic situation of two mutually receding measuring stations so that each station would make the first measurement in its own frame) — would have proved Everett’s interpretation to be the correct theory of quantum mechanics at the expense of the reigning Copenhagen interpretation. Since everybody still falsely believes Everett’s theory were a many-universes (rather than a many-cuts) interpretation, the predictable outcome would have been unbearable as a measured fact. In this way, the overdue empirical confirmation of microscopically sharp “assignment conditions” existing in physics besides Newton’s “laws” and “initial conditions,” got missed or rather postponed. The assignment conditions are different for each observer in his own quantum world, if Einstein’s provocative prediction that two non-commuting observables can be measured in physics in defiance of quantum mechanics is the empirically confirmed alternative interpretation of the predicted outcome: that two observer-specific quantum worlds in the sense of von Neumann have become manifest empirically) is adopted. But the latter is too scary even to be contemplated owing to its religion-rehabilitating character. So it was “wise” in a sense on the part of the physical community to forget about Asher Peres and Susan Feingold and the rest of the crew? Such a scientific tactlessness – to arrive at an empirical clash with the common sense of a century – is the hallmark of Einstein’s proposals. This time around, its empirical verification got eschewed for more than two decades, mostly for subconscious reasons I would expect. Copenhagen — Einstein’s dearest enemy — therefore still reigns to date even though it most likely is no longer alive.

6) The sixth case in point is the classical explanation of Planck’s constant as a classical Sackur-action in statistical mechanics, published 26 years ago. Any momentarily closed classical statistical mechanical system (like a gas or fluid or composite system chemical structure like a brain) contains a phase-space volume described by the Sackur-Tetrode equation which contains Planck’s constant in the denominator – but not as a constant, only as a unit. So a system-specific unit action can be calculated. In the case of the brain, it empirically coincides with h-bar to within a factor of less than two when calculated roughly. This fact may or may not be a coincidence. Evidence in favor of the second alternative was later unexpectedly found in the course of pursuing the new science of endophysics. The prospect of better understanding both quantum mechanics and relativity on this basis has come into view. Yet so, of course, without catching any one’s interest in the scientific community. Our question here is: Why the “of course”?

7) The seventh case in point that I had the good fortune to come in contact with is the classical Pauli cell. The topic of “classical indistinguishability” has an incredibly long history, going back (via Hans Primas, Hermann Weyl, Wolfgang Pauli, Josiah Willard Gibbs, the Leibniz-Clarke-Newton correspondence, Spinoza, the Mutakallimún and Gregorius of Naziance) to Anaxagoras in ancient Greece and the town of Lampsacus (Lapseki today which is still famous for its giant cherries). The physical existence of indistinguishable particles entails a rationally explicable miracle: an instantaneous jumping of particle identities at well-defined mutual positions in space in their common frame, in between two or more particles provided they are “absolutely” (transfinitely exactly) equal. No one takes notice for more than two decades of this mathematical fact as an element of quantum mechanics explained classically. Chemistry relies crucially on it. It in addition teaches us something about our own nature: Consciousness appears to be attached to an anatomically localized subset of such “transfinitely exactly polished” particles in a certain part of our brain – if the Feingold experiment has the predicted outcome. Such proposals in the footsteps of Einstein and Pauli are hard even to be made plausible today.

8) Number eight is the brain equation of 1974. If it had not been consistently ignored, the robots that are so desperately lacking to humankind today in an ongoing emergency would long be available. On the empirical side, there is a matching fact: Lack of support for the “Pandaka pygmaea Brain Research Institute” first proposed in 1990. Here the smallest biological brain functioning like ours, that of Pandaka (and that of a close relative, Gobius niger, that already is halfway in size between Pandaka’s and ours) would have been investigated in maximum detail in the footsteps of Werner Reichardt’s who had devoted his life to the house fly’s brain at age 27 (as he once told me). The prediction that many nobel prizes would be forthcoming had no charming effect on the scientific community – which is the point of interest in our present context.

9) Example number nine is a confirmation of Einsteinophobia again – directed against the young Einstein for once. It refers to the experience, collected over two decades, that it is not allowed any longer to draw new conclusions from Einstein’s old findings. Equally disallowed are deviations from ingrained conclusions derived from the latter by other workers (like the famous horizon-eliminating transformations which although mathematically admissible are unphysical). The gravitational time-slowdown of clocks (T), found in the equivalence principle by Einstein in 1907, has since acquired three natural-born twins (L, M, Ch) for length, mass, charge; the whole bunch therefore got nicknamed “Telemach” (after Ulysses’ son Telemachus). The implied improved understanding of black holes has, far from triggering a wave because of its beauty, become a planetary taboo topic. Einstein’s theory — a taboo, both in quantum mechanics and in relativity?

10) Example number ten makes the bridge to our topic proper (the LHC). A doctoral dissertation containing an early corollary to Telemach (a rotating frictionless wheel when lowered onto the surface of a neutron star is radially enlarged by 34 percent to conserve angular momentum) got rejected by the faculty in charge, despite two A grades granted in the absence of any other graded report. A nobelist asked our forgiving for his not daring to help us. It took us two years before getting a glimpse of the motivation: The result touched on the dogma of Hawking radiation and, with it, on the safety of the LHC experiment.

The absence of Hawking radiation, demonstrated by our group, does not automatically mean that there is no remaining safety net for CERN. Two important safety factors need to be taken into account: The continued existence of neutron stars in the cosmos, and an possible slow (non-exponential) growth rate a inside matter. Both are sold to the public as life insurances by CERN against better knowledge.

Case 1 (neutron stars): CERN claims that the ultrafast natural cousins to the ultraslow human-made miniature black holes, hoped to be generated in Geneva, would long have eaten all neutron stars inside out if the human made ones posed any risk to earth. However, while it is true that natural miniblackholes will get stuck inside a neutron star, the alleged high growth rate so the star will be eaten, is false: Any beginning growth in the crust comes to a standstill when the black hole sinks into the core. This is because the superfluid coreis frictionless according to quantum mechanics so the black hole cannot accrete matter there. The quantum guardian angel was communicated to CERN in time and published ahead of their (silent) “safety report.”

Case 2 (non-exponential growth): CERN claims that inside ordinary matter, black holes grow non-exponentially (just the opposite of what was assumed before). Thus while the fact that earth is going to be eaten inside out as the consequence of the experiment if successful is conceded, death allegedly will come slow. 50 million years was an estimate for which BBC conducted an opinion poll 4 years ago – with appallingly low approval rates by the public. In its subsequent “safety report,” the number was increased more than a hundred-fold. Although the corresponding paper was sent to CERN long before their safety report appeared, it remains unquoted up to this day. The fact that a chaotic attractor (a “Kleiner attractor in real space”) is formed inside matter as an exponentially growing miniature miniquasar so the eating time is reduced to the order of years is taboo.

The point in our context is not these details (or any accompanying cover-up) — it is the silence of the scientific community. Our topic proper is loss of rationalism on a suicide-prone planet. I am not sure I could convince you of an overall decline in the disciplined spirit of science with my ten points. Or of the persisting truth of Francis Bacon’s claim that nature is humankind’s enemy posing booby traps that become the more dangerous the more advanced the technology is. This healthy rationalist attitude has evaporated from the planet, or so it appears.

My friend C. Andy Hilgartner is not so optimistic. He thinks there is a virus – a lethal assumption – contained in rationalism itself. Or more specifically in the way post-hunter-gatherer societies are “languaging.” He is the first to have written an artificial grammar derived from explicit premises (the “non-Aristotelian premises” proposed in 1941 by Alfred Korzybski). From those premises, he with linguist Ronald Harrington generated a “Let us keep track of what we say” notational language. It avoids the crucial mistake which Hilgartner sees in the pretense, implicit in the usual generalized grammar underlying the Indo-European languages among others, that unlike verbs, nouns (maps) are implicitly identified with what they stand for (territory). This amounts to a built-in dishonesty in our languaging and hence in our thinking.

I hope that this advanced level of rationalism (Korzybski’s 1941 book is titled “Science and Sanity”) is not really needed for the planet’s survival, in the present short-term situation. For as we saw even the traditional rationalism called “science” is violated by the current lifeboat-defying collective inactivity of the rest of the globe in the face of CERN’s activity. But I cannot rule out that Andy has caught the real culprit so everything placed before your judgment above was naïve since the real metánoia needed remained unaddressed. The existing urgency would be my only excuse.

Let me close proposing an opinion poll in case anyone cares to reply: Please, add a Y or an N to your name and/or text answering the following question: “Should CERN take a break and allow the scientific safety conference to be convened? Yes or no?” The N answers will be of special interest to every reader.

I thank Bill Seaman, Ken Hiwaki, Artur Schmidt and Martha Bartter for discussions. For JO.R. (042711)

As I remarked in my heartfelt endorsement for astronomer Jeff Kanipe’s fantastic book at Amazon.com, Dobzhansky noted,

One can argue that all environments are hostile, and that death and extinction are probable events, while survival is improbable. Just how life has managed to overcome this improbability is a problem which many biologists find challenging and fascinating. In my opinion, this problem may well be used as the framework on which to build the teaching of biology [1].

Building upon profound observations along these lines, readers may find that Kanipe offers some poetically illustrated support for my conjecture that this problem may well be used as the framework on which to build the teaching of every science — from biology to cosmology to economics to political science.

On the Origin of Mass Extinctions: Darwin’s Nontrivial Error offers a few choice previews from this beautiful, optimistic, and most highly recommended book!

Matt Funk, FLS

[1]. DOBZHANSK Y, T. (1964). Biology, Molecular and Organismic. Amer Zool 4:443–452.

Dear Lifeboat Foundation Family & Friends,

A few months back, my Aunt Charlotte wrote, wondering why I — a relentless searcher focused upon human evolution and long-term human survival strategy, had chosen to pursue a PhD in economics (Banking & Finance). I recently replied that, as it turns out, sound economic theory and global financial stability both play central roles in the quest for long-term human survival. In the fifth and final chapter of my recent Masters thesis, On the Problem of Sustainable Economic Development: A Game-Theoretical Solution, I argued (with considerable passion) that much of the blame for the economic crisis of 2008 (which is, essentially still upon us) may be attributed the adoption of Keynesian economics and the dismissal of the powerful counter-arguments tabled by his great rival, F.A. von Hayek. Despite the fact that they remained friends all the way until the very end, their theories are diametrically opposed at nearly every point. There was, however, at least one central point they agreed upon — indeed, Hayek was fond of quoting one of Keynes’ most famous maxims: “The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else” [1].

And, with this nontrivial problem and and the great Hayek vs. Keynes debate in mind, I’ll offer a preview-by-way-of-prelude with this invitation to turn a few pages of On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective:

It is perhaps significant that Keynes hated to be addressed as “professor” (he never had that title). He was not primarily a scholar. He was a great amateur in many fields of knowledge and the arts; he had all the gifts of a great politician and a political pamphleteer; and he knew that “the ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is generally understood. Indeed the world is ruled by little else” [1]. And as he had a mind capable of recasting, in the intervals of his other occupations, the body of current economic theory, he more than any of his compeers had come to affect current thought. Whether it was he who was right or wrong, only the future will show. There are some who fear that if Lenin’s statement is correct that the best way to destroy the capitalist system is to debauch the currency, of which Keynes himself has reminded us [1], it will be largely due to Keynes’s influence if this prescription is followed.…

Perhaps the explanation of much that is puzzling about Keynes’s mind lies in the supreme confidence he had acquired in his power to play on public opinion as a supreme master plays on his instrument. He loved to pose in the role of a Cassandra whose warnings were not listened to. But, in fact, his early success in swinging round public opinion about the peace treaties had given him probably even an exaggerated estimate of his powers. I shall never forget one occasion – I believe the last time that I met him – when he startled me by an uncommonly frank expression of this. It was early in 1946, shortly after he had returned from the strenuous and exhausting negotiations in Washington on the British loan. Earlier in the evening he had fascinated the company by a detailed account of the American market for Elizabethan books which in any other man would have given the impression that he had devoted most of his time in the United States to that subject. Later a turn in the conversation made me ask him whether he was not concerned about what some of his disciples were making of his theories. After a not very complimentary remark about the persons concerned, he proceeded to reassure me by explaining that those ideas had been badly needed at the time he had launched them. He continued by indicating that I need not be alarmed; if they should ever become dangerous I could rely upon him again quickly to swing round public opinion – and he indicated by a quick movement of his hand how rapidly that would be done. But three months later he was dead [2].

As always, any and all comments, criticisms, thoughts, and suggestions are welcome!

Bidding you Godspeed,

Matt Funk, FLS, PhD Candidate, University of Malta, Dept. of Banking & Finance

[1]. KE YNES, J. (1920). The General Theory of Employment, Interest and Money (Palgrave Macmillan, London).

[2]. HAYEK, F. (1952). Review of R.F. Harrod’s ‘The Life of John Maynard Keynes’. J of Mod Hist 24:195–198.

Perhaps the most important lesson, which I have learned from Mises, was a lesson located outside economics itself. What Mises taught us in his writings, in his lectures, in his seminars, and in perhaps everything he said, was that economics—yes, and I mean sound economics, Austrian economics—is primordially, crucially important. Economics is not an intellectual game. Economics is deadly serious. The very future of mankind —of civilization—depends, in Mises’ view, upon widespread understanding of, and respect for, the principles of economics.

This is a lesson, which is located almost entirely outside economics proper. But all Mises’ work depended ultimately upon this tenet. Almost invariably, a scientist is motivated by values not strictly part of the science itself. The lust for fame, for material rewards—even the pure love of truth—these goals may possibly be fulfilled by scientific success, but are themselves not identified by science as worthwhile goals. What drove Mises, what accounted for his passionate dedication, his ability to calmly ignore the sneers of, and the isolation imposed by academic contemporaries, was his conviction that the survival of mankind depends on the development and dissemination of Austrian economics…

Austrian economics is not simply a matter of intellectual problem solving, like a challenging crossword puzzle, but literally a matter of the life or death of the human race.

–Israel M. Kirzner, Society for the Development of Austrian Economics Lifetime Achievement Award Acceptance Speech, 2006

Dear Lifeboat Foundation family & friends,

This 243-page thesis and this 16-page executive summary deliver a tenable, game-theoretical solution to this complex global dilemma:

Our narrative tables evolutionarily stable strategy for the problem of sustainable economic development on earth and other earth-like planets. In order to accomplish the task at hand with so few words, we hit the ground running with an exploration of Bertrand Russell’s conjecture that economic power is a derivative function of military power. Next we contextualize the formidable obstacle presented of teleological thinking. Third, we introduce Truly Non-cooperative Games – axioms and complimentary negotiation models developed to analyze a myriad of politico-economic problems, including the problem of sustainable economic development. Here we present The Principle of Relative Insularity, a unified theory of value which unites economics, astrophysics, and biology. Finally, we offer a synthetic narrative in which we explore several crucial logical implications that follow from our findings.

Those interested in background details and/or a deeper exploration of the logical implications that follow from this theoretical development may wish to pursue a few pages of an comprehensive, creative, and thoroughly exhaustive letter of introduction to this abridged synthesis: The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth.

Those interested in considering how this game-theoretical solution informs “evolutionarily stable” investment strategy may also wish to take in a brief overview of my PhD research: On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective.

Please feel free to post all thoughts, comments, criticisms, and suggestions.

Thanks for reading!

Sincerely,

Matt Funk, FLS, BSc, MA, MFA, PhD Candidate, University of Malta, Department of Banking & Finance

PS: The author would like to thank the Lifeboat Foundation, Linnean Society of London, Property and Environment Research Center, Society for Range Management, Professors Kurial, Nagarajan, Baldacchino, Fielding, Falzon (University of Malta), Lockwood (University of Wyoming), MacKinnon (Memorial University), Sloan (Lancaster University), McKenna (Notre Dame), Schlicht (Ludwig-Maximilians- Universität München) and his dedicated team at MPRA, author & astronomer Jeff Kanipe, Dr Willard S. Boyle, Dr John Harris, fellow students, family, and friends for their priceless guidance, support, and encouragement. He also sends out a very special thanks to Professors Frey (Universität Zürich), Selten (Universität Bonn), and Nash (Princeton University) for their originality, independence, and inspiration.

As leaders of calorie restriction research and practice, Meredith Averill and I often participate in media events. A recent news conference covered rapidly evolving aspects of calorie restriction research that anyone could benefit from, whether they choose to follow a low-calorie lifestyle or not. Therefore, we thought it appropriate to share the details of the event with the Lifeboat Foundation audience.

The conference was hosted by the American Federation of Aging Research (AFAR). AFAR is a forward-looking organization that provides financial support for early- and mid-career scientists who are developing careers in the study of aging.

This conference, entitled “You are What you Don’t Eat!” presented two world-famous CR scientists, Drs. Luigi Fontana and Donald Ingram. After an introduction from AFAR’s board member, Dr. Jack Watters, both scientists shared many profound insights that could extend healthy lifespan for millions of people.

Dr. Fontana first reminded us how important calorie restriction research is for the health and financial viability of the health care system: “Cardiovascular disease (CVD), cancer, stroke and diabetes account for nearly 70% of the deaths in the United States and Europe. About 80% of adults over 65 years of age have at least one chronic disease, and 50% have two or more of these chronic diseases that accelerate the aging process1 .” The point he makes is that health care systems, especially with our rapidly aging population cannot sustain this large number of people with disease.

Meanwhile, his CR studies – many done in conjunction with the CR Society Intl. – show that those following a serious CR diet exhibit less risk of cardiovascular disease, cancer, stroke, and diabetes – all chronic diseases that people in Western societies are so prone to. Drawing parallels with animal studies, Fontana points out that CR mice are found to live much longer and in better health. When they die, autopsies show no sign of a chronic condition. Dr. Fontana says the same is possible for people. He hailed the healthiest old people as “escapers:” people who live to 100 and contract no chronic disease.

Against that backdrop, Dr. Fontana explained that his human CR studies have looked carefully at various markers in human calorie restrictors – T3, IGF-I, insulin, glucose, correlating them to successful CR, established in animal studies. This has given him a battery of indicators that can used by anyone to judge the effectiveness of a CR regimen. These are the core of the CR Way biomarkers that we recommend for testing and tracking by anyone following a CR diet. Fontana’s presentation underlines the reality that living free of chronic disease is attainable for humans.

Dr. Ingram presented valuable research results. He discussed many aspects of his productive CR research career, including his search for a CR mimetic. He has looked at some well known candidates such at Metformin (producing no difference in life span extension in his studies), 2 d-oxyglucose, (proving to be unusable because of dangerous side effects in the heart). And a promising possibility: avocado-derived mannoheptulose. Highly recommended by The CR Way, avocados have a profound glucose/insulin-lowering effect, according to Dr. Ingram. He attributes this to mannoheptulose, a sugar that’s rare in the human diet and that reduces glycolysis via hexokinase inhibition.

Bioavailability of avocado-derived mannoheptulose in dogs

Gary Davenport1, Stefan Massimino1, Michael Hayek1, Michael Ceddia1, John Burr1, Chyon-Hwa Yeh1, Lijuan Li1, George Roth2 and Donald Ingram3

1 Procter & Gamble, Lewisburg, OH
2 Geroscience, Pylesville, MD
3 Pennington Biomedical Research Center, Baton Rouge, LA

The FASEB Journal: The Journal of the Federation of the Societies for Experimental Biology, now on their Web site: http://www.fasebj.org/cgi/content/meeting_abstract/24/1_MeetingAbstracts/725.3, accessed April 1, 2011

Mannoheptulose (MH) is a 7-carbon sugar found in avocados and other natural sources that acts to reduce glycolysis via hexokinase inhibition. It has been proposed as a calorie restriction (CR) mimetic that delivers anti-aging and health-promoting benefits of CR without reducing food intake. Three studies were conducted to evaluate MH bioavailability when fed to dogs as an avocado extract (AvX) based on MH levels in urine (Study 1) and plasma (Study 2 & 3). In Study 1, Labrador Retrievers (LR; n=15) and Fox Terriers (n=15) were fed AvX-containing diets formulated to deliver 0, 2 or 5 mg MH/kg BW. All dogs were subjected to 24-hour quantitative urine collections. A dose-dependent increase (p<0.05) in urinary MH occurred with increasing dietary MH. In Study 2, LR (n=6) were fed AvX-containing diets once daily to deliver 0, 1 or 2 mg MH/kg BW. Sequential blood samples were collected before and after feeding through 12 hr and at 24-hr post-feeding. Plasma MH increased (P<0.05) with both MH diets compared to control. Peak MH occurred 6–8 hr post-feeding and returned to non-detectable levels by 24 hr. In Study 3, similar MH results were observed for LR (n=10) fed AvX-containing diets twice daily to provide 0 or 2 mg MH/kg BW. Peak MH occurred within 2–4 hr of MH consumption and returned to non-detectable levels by 24 hr.

Mannoheptulose, fed as an avocado extract, is biologically available in dogs based on its appearance in plasma and urine.

Dr. Ingram shared some additional successful research2 on the neuroprotective effects of blueberries. He and his colleagues found that mice that were injected with a blueberry extract were protected against neurodegeneration induced by a toxic substance.

The growing interest in phytonutrients for health and longevity was reinforced by Dr. Fontana, who reported a current experiment gauging the effects of a cocktail of polyphenol extracts.

_______________

On behalf of everyone interested in longevity, we asked the scientists to tell us where they think the next important areas of their research should be. Dr. Fontana wants to turn his attention to CR and cancer, noting that many unknowns continue to make preventing cancer’s occurrence – even predicting its likelihood – difficult. He reminded us that “cancer is the second leading cause of death in many developed countries,” accounting for approximately one-fourth of all deaths. Among women, aged 40 to 79, and among men aged, 60 to 79, cancer is the leading cause of death in the U.S. The lifetime probability of developing cancer is 46% for men and 38% for women2 . Furthermore, many of the processes of cancer mirror processes of aging, so this research will do double duty.

Dr. Fontana believes that by looking at CR, which has been shown to reduce cancer incidence and rate of metastasis in animal and human studies3, better ways will be found to predict the likelihood of cancer as well as to prevent it.

This line of study will also help determine potential aging markers, a recurring theme for both presenters. Dr. Ingram declared in his answer to our question: Rate-of- aging markers need to be established and validated. Future projects need to focus on this work. Further, he called on the gerontological community to work hard on building consensus on these biomarkers, so that they can be used by researchers, healthcare professionals, and longevists.

We are heartened to know that forward-thinking organizations like AFAR are facilitating the work of talented scientists who will likely make it possible ultimately for all to live in good health longer.

The hope of the CR Society Intl. and The CR Way is that the work of these scientists will be fully appreciated and that government and other funders will respond with the support that is needed to pursue research that helps us all live longer, disease-free lives and ultimately makes a big difference in the financial viability of health care.

Thanks to the Lifeboat Foundation for inviting me to share this information.

Paul McGlothin,

Vice President Research, The CR Society International

Co-author, The CR Way

Executive Director, The CR Way Longevity Center

[email protected]

___________

1 Modulating Human Aging and Age-Associated Diseases

Luigi Fontana, M.D., Ph.D.

Biochimica Biophysica Acta. 2009 Oct;1790(10):1133–8. Epub 2009 Feb 10.

Population aging is progressing rapidly in many industrialized countries. The United States population aged 65 and over is expected to double in size within the next 25 years. In sedentary people eating Western diets aging is associated with the development of serious chronic diseases, including type 2 diabetes mellitus, cancer and cardiovascular diseases. About 80 percent of adults over 65 years of age have at least one chronic disease, and 50 percent have at least two chronic diseases. These chronic diseases are the most important cause of illness and mortality burden, and they have become the leading driver of health care costs, constituting an important burden for our society.

Data from epidemiological studies and clinical trials indicate that many age-associated chronic diseases can be prevented, and even reversed, with the implementation of healthy lifestyle interventions. Several recent studies suggest that more drastic interventions (i.e. calorie restriction without malnutrition and moderate protein restriction with adequate nutrition) may have additional beneficial effects on several metabolic and hormonal factors that are implicated in the biology of aging itself. Additional studies are needed to understand the complex interactions of factors that regulate aging and age-associated chronic disease.

PMID: 19364477

2A blueberry-enriched diet provides cellular protection against oxidative stress and reduces a kainate-induced learning impairment in rats.

Duffy KB, Spangler EL, Devan BD, Guo Z, Bowker JL, Janas AM, Hagepanos A, Minor RK, DeCabo R, Mouton PR, Shukitt-Hale B, Joseph JA, Ingram DK.

Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.

Neurobiology of Aging. 2008 Nov;29(11):1680–9. Epub 2007 May 23.

Young male Fischer-344 rats were fed a diet containing 2% blueberry (BB) extract or control diet for at least 8 weeks and then received bilateral hippocampal injections of kainic acid (KA 200 ng/0.5 microl) or phosphate buffered saline (PBS). One week later rats were trained in one-way active footshock avoidance in a straight runway followed the next day by training in a footshock motivated 14-unit T-maze with documented sensitivity to hippocampal glutamatergic manipulations. Based on analyses of several performance variables, KA-treated rats exhibited clearly impaired learning performance; however, the BB diet significantly reduced this impairment. Supporting the behavioral findings, stereological assessment of CA1 pyramidal neurons documented greater neuronal loss in KA-treated controls compared to KA-treated rats on the BB diet.

In an in vitro experiment, FaO cells grown in medium supplemented with serum from BB-fed rats had enhanced viability after exposure to hydrogen peroxide. These findings suggest that BB supplementation may protect against neurodegeneration and cognitive impairment mediated by excitotoxicity and oxidative stress.

3 Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research.
Hursting SD, Smith SM, Lashinger LM, Harvey AE, Perkins SN.
Carcinogenesis. 2010 Jan;31(1):83–9. Epub 2009 Dec 7.

Calorie restriction (CR) is arguably the most potent, broadly acting dietary regimen for suppressing the carcinogenesis process, and many of the key studies in this field have been published in Carcinogenesis. Translation of the knowledge gained from CR research in animal models to cancer prevention strategies in humans is urgently needed given the worldwide obesity epidemic and the established link between obesity and increased risk of many cancers.

PMID: 19969554

# # #