Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

A promising approach for the direct on-chip synthesis of boron nitride memristors

Two-dimensional (2D) materials, thin crystalline substances only a few atoms thick, have numerous advantageous properties compared to their three-dimensional (3D) bulk counterparts. Most notably, many of these materials allow electricity to flow through them more easily than bulk materials, have tunable bandgaps, are often also more flexible and better suited for fabricating small, compact devices.

Past studies have highlighted the promise of 2D materials for creating advanced systems, including devices that perform computations emulating the functioning of the brain (i.e., neuromorphic computing systems) and chips that can both process and store information (i.e., in-memory computing systems). One material that has been found to be particularly promising is (hBN), which is made up of boron and nitrogen atoms arranged in a honeycomb lattice resembling that of graphene.

This material is an excellent insulator, has a wide bandgap that makes it transparent to visible light, a good mechanical strength, and retains its performance at high temperatures. Past studies have demonstrated the potential of hBN for fabricating memristors, that can both store and process information, acting both as memories and as resistors (i.e., components that control the flow of electrical current in ).

Elon Musk’s Drops Hints About His Next Master Plan

Questions to inspire discussion.

AI and Supercomputing Developments.

🖥️ Q: What is XAI’s Colossus 2 and its significance? A: XAI’s Colossus 2 is planned to be the world’s first gigawatt-plus AI training supercomputer, with a non-trivial chance of achieving AGI (Artificial General Intelligence).

⚡ Q: How does Tesla plan to support the power needs of Colossus 2? A: Elon Musk plans to build power plants and battery storage in America to support the massive power requirements of the AI training supercomputer.

💰 Q: What is Musk’s prediction for universal income by 2030? A: Musk believes universal high income will be achieved, providing everyone with the best medical care, food, home, transport, and other necessities.

🏭 Q: How does Musk plan to simulate entire companies with AI? A: Musk aims to simulate entire companies like Microsoft with AI, representing a major jump in AI capabilities but limited to software replication, not complex physical products.

Freeze-framing the cellular world to capture a fleeting moment of activity

Now, in an article published in Light: Science & Applications, researchers from The University of Osaka, together with collaborating institutions, have unveiled a cryo– technique that takes a high-resolution, quantitatively accurate snapshot at a precisely selected timepoint in dynamic cellular activity.

Capturing fast dynamic cellular events with spatial detail and quantifiability has been a major challenge, owing to a fundamental trade-off between and the “photon budget,” that is, how much light can be collected for the image. With limited photons and only dim, noisy images, important features in both space and time become lost in the noise.

“Instead of chasing speed in imaging, we decided to freeze the entire scene,” explains one of the lead authors, Kosuke Tsuji. “We developed a special sample-freezing chamber to combine the advantages of live-cell and cryo-fixation microscopy. By rapidly freezing live cells under the optical microscope, we could observe a frozen snapshot of the cellular dynamics at high resolutions.”

AI-enhanced technique assembles defect-free arrays with thousands of atoms

The simulation of quantum systems and the development of systems that can perform computations leveraging quantum mechanical effects rely on the ability to arrange atoms in specific patterns with high levels of precision. To arrange atoms in ordered patterns known as arrays, physicists typically use optical tweezers, highly focused laser beams that can trap particles.

Can immune cells stave off devastating neurodegenerative diseases? Scientists aim to find out

An evolving form of therapy to treat devastating neurodegenerative disorders by injecting fresh immune cells—microglia—directly into the brain, promises a new lease on health by slowing the progression of mind-robbing conditions.

The research, underway in China, is in the pre-clinical phase of investigation and is aimed at protecting vital neurons, while at the same time, combating the early hallmarks of neurological disorders, such as Alzheimer’s disease.

So far, the transplants have been performed in animal models, but they have ameliorated symptoms of neurological disease.

Plasma group publishes new framework to advance fusion energy research

Scientists pursuing magnetically-confined nuclear fusion as a clean energy source grapple with the “core-edge challenge,” the need to integrate the core of the reactor, where plasma must be 10 times hotter than the sun, with the reactor’s edge. The edge must sustain a lower temperature to avoid melting of the material containing the plasma and extracting its energy to produce power.

How to build larger, more reliable quantum computers, even with imperfect links between chips

While quantum computers are already being used for research in chemistry, material science, and data security, most are still too small to be useful for large-scale applications. A study led by researchers at the University of California, Riverside, now shows how “scalable” quantum architectures—systems made up of many small chips working together as one powerful unit—can be made.

/* */