Human visual neurons rely on event-driven, energy-efficient spikes for communication, while silicon image sensors do not. The energy-budget mismatch between biological systems and machine vision technology has inspired the development of artificial visual neurons for use in spiking neural network (SNN). However, the lack of multiplexed data coding schemes reduces the ability of artificial visual neurons in SNN to emulate the visual perception ability of biological systems. Here, we present an artificial visual spiking neuron that enables rate and temporal fusion (RTF) coding of external visual information. The artificial neuron can code visual information at different spiking frequencies (rate coding) and enables precise and energy-efficient time-to-first-spike (TTFS) coding. This multiplexed sensory coding scheme could improve the computing capability and efficacy of artificial visual neurons. A hardware-based SNN with the RTF coding scheme exhibits good consistency with real-world ground truth data and achieves highly accurate steering and speed predictions for self-driving vehicles in complex conditions. The multiplexed RTF coding scheme demonstrates the feasibility of developing highly efficient spike-based neuromorphic hardware.
A spiking neural network that is based on event-driven vision sensors can be created using two parallel photodiodes of opposite polarities that output programmable spike signal trains in response to changes in light intensity.
Beaubois et al. introduce a real-time biomimetic neural network for biohybrid experiments, providing a tool to study closed-loop applications for neuroscience and neuromorphic-based neuroprostheses.
Spiking neural networks could offer a low-energy consuming solution to deep learning applications on the edge and in mobile devices. Using temporal coding, where the timing of spikes carries extra information, a new method efficiently converts conventional artificial neural networks to spiking networks.
Bahrami, M.K., Nazari, S. Sci Rep 14, 3,388 (2024). https://doi.org/10.1038/s41598-024-54043-7
The integration of artificial neuromorphic devices with biological systems plays a fundamental role for future brain-machine interfaces, prosthetics, and intelligent soft robotics. Harikesh et al. demonstrate all-printed organic electrochemical neurons on Venus flytrap that is controlled to open and close.
Memristive and nanoionic devices have recently emerged as leading candidates for neuromorphic computing architectures. While top-down fabrication based on conventional bulk materials has enabled many early neuromorphic devices and circuits, bottom-up approaches based on low-dimensional nanomaterials have shown novel device functionality that often better mimics a biological neuron. In addition, the chemical, structural and compositional tunability of low-dimensional nanomaterials coupled with the permutational flexibility enabled by van der Waals heterostructures offers significant opportunities for artificial neural networks. In this Review, we present a critical survey of emerging neuromorphic devices and architectures enabled by quantum dots, metal nanoparticles, polymers, nanotubes, nanowires, two-dimensional layered materials and van der Waals heterojunctions with a particular emphasis on bio-inspired device responses that are uniquely enabled by low-dimensional topology, quantum confinement and interfaces. We also provide a forward-looking perspective on the opportunities and challenges of neuromorphic nanoelectronic materials in comparison with more mature technologies based on traditional bulk electronic materials.
Euler’s Identity:
The most beautiful equation in mathematics that combines five of the most important constants of nature: 0, 1, π, e and i, with the three fundamental operations: addition, multiplication and exponentiation.
It’s mystical.
Euler’s identity is an equality found in mathematics that has been compared to a Shakespearean sonnet and described as “the most beautiful equation.” It is a special case of a foundational equation in complex arithmetic called Euler’s Formula, which the late great physicist Richard Feynman called in his lectures “our jewel” and “the most remarkable formula in mathematics.”
Leonardo DiCaprio’s dream.
Stars at the Milky Way’s center stay young forever, scientists claim, by feeding off dark matter particles that are abundant there.
Public voting will decide who gets to fly to space on Blue Origin’s New Shepard suborbital vehicle.