Toggle light / dark theme

It takes a bold person to declare that interstellar travel is now within our grasp. Physicist Stephen Hawking has shown that he is just that, taking part in the Breakthrough Starshot initiative. The project has announced a $100m research programme to investigate the technology of using light to propel spacecraft out of the solar system to explore neighbouring stars.

For the first time in human history, interstellar travel is a realistic and achievable aspiration, and not just the playground of science fiction.

So what has changed that makes interstellar travel achievable? First of all, clear expectations. This is not about a great big spaceship with a colony of astronauts travelling for generations to settle a planet around a distant star. Neither is it about faster-than-light travel, tunnelling through wormholes to arrive at the other side of the universe in an instant of time. This is about technology that already exists, or nearly exists, being applied in new and exciting ways.

Read more

Using a weird phenomenon in which particles of light seem to travel at faster-than-light speeds, scientists have shown that waves of light can seem to travel backward in time.

The new experiment also shows other bizarre effects of light, such as pairs of images forming and annihilating each other.

Taken together, the results finally prove a century-old prediction made by British scientist and polymath Lord Rayleigh. The phenomenon, called time reversal, could allow researchers to develop ultra-high-speed cameras that can peer around corners and see through walls. [In Images: The World’s 11 Most Beautiful Equations].

Read more

Welcome to our imaginary existential nightmare…


Stephen Hawking recently discussed black holes and the often contradictory properties associated with them during a lecture at Harvard. The Harvard Gazette said recently that Hawking specifically explained that, if information is really lost in black holes, then we will have been misunderstanding not only black holes, but the science of determinism, for the last 200 years.

Hawking said that particles that fall into a black hole “can’t just emerge when the black hole disappears.” Instead, “the particles that come out of a black hole seem to be completely random and bear no relation to what fell in. It appears that the information about what fell in is lost, apart from the total amount of mass and the amount of rotation.”

To put that more simply, it’s like someone shooting a basketball into a hoop and, instead of the ball coming out of the basket, something totally different comes out. But that’s not what Hawking is concerned about – he’s more concerned with the fact that the basketball – or information – seems to vanish altogether.

Ever notice how maps of the large structures of the Universe look like maps of the brain or a Pollock painting?


On the grandest scale, our universe is a network of galaxies tied together by the force of gravity. Cosmic Web, a new effort led by cosmologists and designers at Northeastern’s Center for Complex Network Research, offers a roadmap toward understanding how all of those tremendous clusters of stars connect—and the visualizations are stunning.

The images below show us several hypothetical architectures for our universe, built from data on 24,000 galaxies. By varying the construction algorithm, the researchers have designed cosmic webs that link up in a number of different ways; based on the size, proximity, and relative velocities of individual galaxies. I call it God View.