Toggle light / dark theme

I am not surprised by this; I do expect this given the existing cyber threat risks around AI especially around the existing under pinning technology/ platforms and net infrastructures.


The finance world is cautiously optimistic about the future of artificial intelligence and how it can be used, but, there is more work needed on regulating the technology when it comes to world markets.

“Financial institutions have been fined billions of dollars because of illegality and compliance breaches by traders. A logical response by banks is to automate as much decision-making as possible, hence the number of banks enthusiastically embracing AI and automation,” said Baker and McKenzie head of financial services regulation Arun Srivastava.

“But while conduct risk may be reduced, the unknown risks inherent in aspects of AI have not been eliminated.”

Cool


Shipments of augmented reality hardware, which combine real-world and virtual images in the user’s field of view, are forecast by market research firm IDC to ramp up over the next few years. Unlike virtual reality hardware, which tends to be more geared toward gaming, AR hardware is particularly suited for enterprise use, such as architecture, equipment repair and maintenance,

Product design and medical procedures, to name a few. IDC predicted that VR hardware will take off first, but AR will catch up, with combined devices markets seeing hardware shipments exceeding.

110 million units in 2020.

New project underway to find answers.


The Allen Institute for Brain Science has announced major updates to its online resources available at “brain-map.org” brain-map.org, including a new resource on Aging, Dementia and Traumatic Brain Injury (TBI) in collaboration with UW Medicine researchers at the University of Washington, and Group Health. The resource is the first of its kind to collect and share a wide variety of data modalities on a large sample of aged brains, complete with mental health histories and clinical diagnoses.

“The power of this resource is its ability to look across such a large number of brains, as well as a large number of data types,” says Ed Lein, Ph.D., Investigator at the Allen Institute for Brain Science. “The resource combines traditional neuropathology with modern ‘omics’ approaches to enable researchers to understand the process of aging, look for molecular signatures of disease and identify hallmarks of brain injury.”

The study samples come from the Adult Changes in Thought (ACT) study, a longitudinal research effort led by Dr. Eric B. Larson and Dr. Paul K. Crane of the Group Health Research Institute and the University of Washington to collect data on thousands of aging adults, including detailed information on their health histories and cognitive abilities. UW Medicine led efforts to collect post-mortem samples from 107 brains aged 79 to 102, with tissue collected from the parietal cortex, temporal cortex, hippocampus and cortical white matter.

Many recent big technological advances in computing, communications, energy, and biology have relied on nanoparticles. It can be hard to determine the best nanomaterials for these applications, however, because observing nanoparticles in action requires high spatial resolution in “messy,” dynamic environments.

In a recent step in this direction, a team of engineers has obtained a first look inside phase-changing nanoparticles, showing how their shape and crystallinity—the arrangement of atoms within the crystal—can have dramatic effects on their performance.

The work, which appears in Nature Materials, has immediate applications in the design of energy storage materials, but could eventually find its way into data storage, electronic switches, and any device in which the phase transformation of a material regulates its performance.

Read more

Researchers at Rice University are working on self-assembling wires that can move matter, essentially “force fields” powered by Tesla coils.

They’ve been working “very quietly,” said adjunct assistant professor Paul Cherukuri. He describes the project, which incorporates Tesla coils and nano-scale filaments, as “self-assembly at a distance.” The project started when the researchers were working with nanotubes, just seeing what they could do when pairing the coils with the electrification from Tesla coils.

Read more

HANOVER, N.H., April 26 (UPI) — Proteins are the contractors of the nanoscale natural world, assembling and building at the atomic, molecular and cellular levels. Increasingly, materials scientists are working to harness that power.

Recently, researchers at Dartmouth College created protein capable of crafting buckyball molecules. “Buckyball” is a nickname for buckminsterfullerene molecules, a soccer ball-shaped molecule of 60 carbon atoms.

The newly synthesized protein organizes buckyballs into a periodic lattice — a wall of buckyballs.

Read more

Good article overall highlighting the gaps in AI talent. I do know that some of the best AI SMEs in the US all have worked somewhere in their careers at the US National Labs because many us had to build “real time” systems that leveraged complex algorithms to self-monitor conditions and react independently under certain conditions arise and in some cases we leveraged the super computer to prove theories as well. I suggest locate where some of these folks exist because you will find your talent pool.


Artificial Intelligence is the field where jobs continue to grow, provided you have the desired skill sets

Diksha Gupta, Techgig.com

Artificial intelligence (AI) is the buzzword in almost all industries. Decision-makers want to make use of massive data they get from various sources. This is where data analytics and artificial intelligence come into play.