Toggle light / dark theme

Due to the pace of Quantum Computing is developing; NIST is rushing to create a Quantum proof cryptographic algorithms to prevent QC hacking. Like I have stated, I believe we’re now less that 7 years away for QC being in many mainstream devices, infrastructure, etc. And, China and it’s partnership with Australia; the race is now on and hotter than ever.


The National Institute for Standards and Technology has begun to look into quantum cybersecurity, according to a new report that details and plans out ways scientists could protect these futuristic computers.

April 29, 2016.

Ransomware has taken off in 2016, already eclipsing the number of attacks observed in a recently published threat report from Symantec.

Post-quantum cryptography discussion in Tacoma WA on May 5th discussing hacking by QC hackers and leveraging Cryptography algorithms to offset the attacks; may be of interest to sit in and even join in the debates. I will try attend if I can because it would be interesting to see the arguments raised and see the responses.


The University of Washington Tacoma Institute of Technology will present a discussion about the esoteric field of post-quantum cryptography at the Northwest Cybersecurity Symposium on May 5.

“I’ve been researching post-quantum cryptography for years, finding ways to protect against a threat that doesn’t yet exist,” said Anderson Nascimento, assistant professor of computer science at the institute, in a release.

Post-quantum cryptography refers to encryption that would be secure against an attack by a quantum computer — a kind of supercomputer using quantum mechanics, which, so far, exists only in theory.

Excellent read and a true point about the need for some additional data laws with our ever exploding information overload world.


Laws for Mobility, IoT, Artificial Intelligence and Intelligent Process Automation

If you are the VP of Sales, it is quite likely you want and need to know up to date sales numbers, pipeline status and forecasts. If you are meeting with a prospect to close a deal, it is quite likely that having up to date business intelligence and CRM information would be useful. Likewise traveling to a remote job site to check on the progress of an engineering project is also an obvious trigger that you will need the latest project information. Developing solutions integrated with mobile applications that can anticipate your needs based upon your Code Halo data, the information that surrounds people, organizations, projects, activities and devices, and acting upon it automatically is where a large amount of productivity gains will be found in the future.

There needs to be a law, like Moore’s infamous law, that states, “The more data that is collected and analyzed, the greater the economic value it has in aggregate.” This law I believe is accurate and my colleagues at the Center for the Future of Work, wrote a book titled Code Halos that documents evidence of its truthfulness as well. I would also like to submit an additional law, “Data has a shelf-life and the economic value of data diminishes over time.” In other words, if I am negotiating a deal today, but can’t get the critical business data I need for another week, the data will not be as valuable to me then. The same is true if I am trying to optimize, in real-time, the schedules of 5,000 service techs, but don’t have up to date job status information. Receiving job status information tomorrow, does not help me optimize schedules today.

Read more

A video of a fully bendable smartphone with a graphene touch display debuts at a Chinese trade show.

A Chinese company just showed off a fully bendable smartphone with a graphene screen during a trade show at Nanping International Conventional Center in Chongqing. Videos of the incredibly flexible phone are making the rounds, and no wonder, as it looks rather impressive.

It isn’t yet known which company developed the bendable smartphone, and very few details have emerged about it. What we do know is that it weighs 200g, the smartphone can be worn around the wrist, and the screen is fully touch enabled.

Read more

The result is a compact accelerator that is not much larger than the laser used to create the plasma. That means that a laser plasma accelerator can be housed in a small building, rather than stretching over hundreds of metres or even several kilometres.

High-quality beam

While laser plasma accelerators exist at several laboratories around the world, EuPRAXIA steering-committee member Carsten Welsch says that “no infrastructure exists where the quality of the accelerated beam satisfies the requirements of industry”. Welsch, who is at the UK’s Cockcroft Institute of Accelerator Science and Technology, adds that “creating such a facility would be a major breakthrough and would attract users from many different sectors”.

Welsch told physicsworld.com that an important goal of EuPRAXIA is to develop technology to “sharpen” the energy spectrum of the electron beam produced by laser plasma accelerators. Today’s accelerators produce electrons with a very wide range of energies, and this spread would have to be reduced significantly before a facility could be used as a source of electrons for scientific and industrial applications.

Read more