Toggle light / dark theme

A groundbreaking trial to see if it is possible to regenerate the brains of dead people, has won approval from health watchdogs.

A biotech company in the US has been granted ethical permission to recruit 20 patients who have been declared clinically dead from a traumatic brain injury, to test whether parts of their central nervous system can be brought back to life.

Scientists will use a combination of therapies, which include injecting the brain with stem cells and a cocktail of peptides, as well as deploying lasers and nerve stimulation techniques which have been shown to bring patients out of comas.

Predictions from quantum physics have been confirmed by countless experiments, but no one has yet detected the quantum physical effect of entanglement directly with the naked eye. This should now be possible thanks to an experiment proposed by a team around a theoretical physicist at the University of Basel. The experiment might pave the way for new applications in quantum physics.

Quantum physics is more than 100 years old, but even today is still sometimes met with wonderment. This applies, for example, to entanglement, a quantum physical phenomenon that can be observed between atoms or photons (light particles): when two of these particles are entangled, the physical state of the two particles can no longer be described independently, only the total system that both particles form together.

Despite this peculiarity, entangled photons are part of the real world, as has been proven in many experiments. And yet no one has observed entangled photons directly. This is because only single or a handful of entangled photons can be produced with the available technology, and this number is too low for the to perceive these photons as light.

In this new short written and directed by the Brothers Lynch, a pioneering mind transfer procedure offers a quadriplegic soldier the opportunity to start a new life. Naturally, things don’t go quite as planned.

This teaser short, titled Trial, is a miniature version of an intended full-length sci-fi action thriller called Residual. Backed by Creative England, the new short is meant to help with the financing of the proposed feature.

Trial was produced by Ed Barratt of Hook Pictures, and it stars Tom Cullen, Ana Ularu and Joseph Mawle. Go here to learn more.

One of the longest standing mysteries of black holes is what happens to stuff when it falls inside. Information can’t move faster than light, so it can’t escape a black hole, but we know that black holes shrink and evaporate over time, emitting Hawking radiation. This has troubled scientists for 40 years. Information can’t simply vanish.

Now, physicists Kamil Brádler and Chris Adami, from the University of Ottawa and Michigan State University respectively, have been able to show that the information is not at all lost, but is transferred from the black holes into the aforementioned Hawking radiation, potentially solving a long-standing mystery of cosmology.

Over 40 years ago, Stephen Hawking put forward the idea that although nothing can escape a black hole, there should be a certain amount of particles emitted from the outer edge of the black hole’s event horizon. This emission would over time steal energy from a black hole, causing it to evaporate and shrink.

(Phys.org)—The question of why space is three-dimensional (3D) and not some other number of dimensions has puzzled philosophers and scientists since ancient Greece. Space-time overall is four-dimensional, or (3 + 1)-dimensional, where time is the fourth dimension. It’s well-known that the time dimension is related to the second law of thermodynamics: time has one direction (forward) because entropy (a measure of disorder) never decreases in a closed system such as the universe.

In a new paper published in EPL, researchers have proposed that the second law of thermodynamics may also explain why is 3D.

“A number of researchers in the fields of science and philosophy have addressed the problem of the (3+1)-dimensional nature of space-time by justifying the suitable choice of its dimensionality in order to maintain life, stability and complexity,” coauthor Julian Gonzalez-Ayala, at the National Polytechnic Institute in Mexico and the University of Salamanca in Spain, told Phys.org.

The world’s largest radio telescope is almost finished — and it’s going to try to make contact with extra-terrestrial life.

This fascinating video and stunning photos show how close the 500m wide Aperture Spherical Telescope, or “FAST”, is to completion.