Toggle light / dark theme

Technology can be awkward. Our pockets are weighed down with ever-larger smartphones that are a pain to pull out when we’re in a rush. And attempts to make our devices more easily accessible with smartwatches have so far fallen flat. But what if a part of your body could become your computer, with a screen on your arm and maybe even a direct link to your brain?

Artificial electronic skin (e-skin) could one day make this a possibility. Researchers are developing flexible, bendable and even stretchable electronic circuits that can be applied directly to the skin. As well as turning your skin into a touchscreen, this could also help replace feeling if you’ve suffered burns or problems with your nervous system.

Two interconnected brain areas — the hippocampus and the entorhinal cortex — help us to know where we are and to remember it later. By studying these brain areas, researchers at Baylor College of Medicine, Rice University, The University of Texas MD Anderson Cancer Center and the National Cancer Institute have uncovered new information about how dysfunction of this circuit may contribute to memory loss in Alzheimer’s disease. Their results appear in Cell Reports.

“We created a new mouse model in which we showed that spatial memory decays when the entorhinal cortex is not functioning properly,” said co-corresponding author Dr. Joanna Jankowsky, associate professor of neuroscience at Baylor. “I think of the entorhinal area as a funnel. It takes information from other sensory cortices — the parts of the brain responsible for vision, hearing, smell, touch, and taste — and funnels it into the . The hippocampus then binds this disparate information into a cohesive memory that can be reactivated in full by recalling only one part. But the hippocampus also plays a role in spatial navigation by telling us where we are in the world. These two functions converge in the same cells, and our study set out to examine this duality.”

The new mouse model was genetically engineered to carry a particular surface receptor on the cells of the entorhinal cortex. When this receptor was activated by administering the drug ivermectin to the mice, the cells of the entorhinal cortex silenced their activity. They stopped funnelling information to the hippocampus. This system allowed the scientists to turn off the entorhinal cortex, and to determine how this affected hippocampal function.

Imagine a future full of electric cars where everyone’s a passenger. Where traffic is not only managed but controlled by a digital network. Where on-demand ride-sharing services have become the norm, and the only human drivers are emergency crews behind the wheel of super-fast vintage “antiques” tasked with taking down AI cars that have gone haywire.

Some of that sounds like the vision of today’s automakers, city planners, tech visionaries and the like, who all salivate at the thought of removing the human element from our roadways as much as possible. Recent developments in driverless technology are surprisingly close to the vision of autonomy portrayed in Kōsuke Fujishima’s 2000 Japanese anime series éX-Driver, which has even more to say about what could become our future in transportation.

éX-Driver follows the adventures of Lisa, Lorna, and their new teammate Sōichi as they wrangle autonomous vehicles that have run amok. These out-of-control “AI cars” endanger not only the helpless passengers inside, but other road users as well. Not looking forward to “autonomobiles”? This could be the perfect gig for you.

Retired U.S. Air Force Colonel Gene Lee, in a flight simulator, takes part in simulated air combat versus artificial intelligence technology developed by a team from industry, the U.S. Air Force, and University of Cincinnati. (credit: Lisa Ventre, University of Cincinnati Distribution A: Approved for public release; distribution unlimited. 88ABW Cleared 05/02/2016; 88ABW-2016–2270)

The U.S. Air Force got a wakeup call recently when AI software called ALPHA — running on a tiny $35 Raspberry Pi computer — repeatedly defeated retired U.S. Air Force Colonel Gene Lee, a top aerial combat instructor and Air Battle Manager, and other expert air-combat tacticians at the U.S. Air Force Research Lab (AFRL) in Dayton, Ohio. The contest was conducted in a high-fidelity air combat simulator.

According to Lee, who has considerable fighter-aircraft expertise (and has been flying in simulators against AI opponents since the early 1980s), ALPHA is “the most aggressive, responsive, dynamic and credible AI I’ve seen to date.” In fact, he was shot out of the ai r every time during protracted engagements in the simulator, he said.

An artificially intelligent fighter pilot system has defeated two attacking jets in a combat simulation.

The AI, known as Alpha, used four virtual jets to successfully defend a coastline against two attacking aircraft — and did not suffer any losses. It also triumphed in simulation against a retired human fighter pilot.

In their paper, researchers from the University of Cincinnati and defence company Psibernetix describe Alpha as “a deadly opponent”. Reporting on simulated assaults against retired US Air Force colonel Gene Lee, the researchers wrote: “Not only could he not score a kill against it, he was shot out of the air by the reds every time after protracted engagements.”