Toggle light / dark theme

A temporary tattoo that can read your emotions. Could this be a new method used for events to id possible problem people. Of course, more work is needed and costs will need to improve; however, is this another tool to help id possible mass murderers, etc.?


The new Israeli-designed skin electrode, affixed to the skin just like a temporary tattoo, can monitor emotions and restore damaged tissue.

Read more

I’m telling folks there is much to be learn in the usage of natural and synthetic resources especially around diamonds — Nanodiamonds Magic.


WEST LAFAYETTE, Ind. — Researchers have demonstrated how to control the “electron spin” of a nanodiamond while it is levitated with lasers in a vacuum, an advance that could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics.

Electrons can be thought of as having two distinct spin states, “up” or “down.” The researchers were able to detect and control the electron spin resonance, or its change from one state to the other.

“We’ve shown how to continuously flip the electron spin in a nanodiamond levitated in a vacuum and in the presence of different gases,” said Tongcang Li, an assistant professor of physics and astronomy and electrical and computer engineering at Purdue University.

Meet the world’s smallest hard drive.


Dutch scientists have developed a unique solution to deal with the data storage problem. By manipulating single atoms, researchers have created the world’s smallest hard drive capable of storing 1 kilobyte of data (8000 bits) in a space under 100 nanometers across. The technology means that all the books in the world could be stored on a device the size of a postage stamp.

In a study published Monday in the journal Nature Nanotechnology, scientists from the Technical University of Delft (TU Delft) said that they have created an atomic hard drive with a storage density that is 500 times greater than current hard drive technology.

Associate Professor at TU Delft and lead researcher Sander Otte and his team found that placing chlorine atoms on a copper surface created the perfect square grid. A hole appears in the grid when an atom is missing. Using a scanning tunneling microscope, scientists were able to move atoms around one by one and even drag individual atoms toward the hole.

Like this feature on QC.


If you have trouble wrapping your mind around quantum physics, don’t worry — it’s even hard for supercomputers. The solution, according to researchers from Google, Harvard, Lawrence Berkeley National Laboratories and others? Why, use a quantum computer, of course. The team accurately predicted chemical reaction rates using a supercooled quantum circuit, a result that could lead to improved solar cells, batteries, flexible electronics and much more.

Chemical reactions are inherently quantum themselves — the team actually used a quote from Richard Feynman saying “nature isn’t classical, dammit.” The problem is that “molecular systems form highly entangled quantum superposition states, which require many classical computing resources in order to represent sufficiently high precision,” according to the Google Research blog. Computing the lowest energy state for propane, a relatively simple molecule, takes around ten days, for instance. That figure is required in order to get the reaction rate.

That’s where the “Xmon” supercooled qubit quantum computing circuit (shown above) comes in. The device, known as a “variational quantum eigensolver (VQE)” is the quantum equivalent of a classic neural network. The difference is that you train a classical neural circuit (like Google’s DeepMind AI) to model classical data, and train the VQE to model quantum data. “The quantum advantage of VQE is that quantum bits can efficiently represent the molecular wave function, whereas exponentially many classical bits would be required.”

Luv it; more believers.


Quantum computers promise to enable faster, far more complex calculations than today’s silicon chip-based computers. But they also raise the possibility that future computers could retroactively break the security of any digital communications that exist today, which is why Google is experimenting with something called “post-quantum cryptography.”

While quantum computer development remains in its early stages, some such computers are already in operation. In theory, future generations of quantum computers could “decrypt any Internet communication that was recorded today, and many types of information need to remain confidential for decades,” software engineer Matt Braithwaite wrote yesterday in a post on Google’s security blog. “Thus even the possibility of a future quantum computer is something that we should be thinking about today.”

Preventing potential nightmares for cryptographers and security organizations will require post-quantum cryptography, Braithwaite said. But Google is far from the only organization researching the possibilities.

I shared this yesterday; however, another article with another spin (no pun intended)


Working at the Massachusetts Institute of Technology’s (MIT) Fermilab physics laboratory in Illinois, a team of physicists studied the states of neutrinos, among the smallest components of an atom.

Neutrinos are pretty inert, passing straight through matter and rarely interacting with it and require extremely sensitive equipment to be picked up.

More information on DARPA’s efforts in build new interface standards for modular design & practical circuit blocks.


Is it possible to develop chip technology that combines the high-performance characteristics of ASICS with the speedy, low-cost features of printed circuit boards?

Scientists at the Defense Advanced Research Projects Agency this week said they were looking for information on how to build interface standards that would enable modular design and practical circuit blocks that could be reused to greatly shorten electronics development time and cost.

+More on Network World: DARPA: Researchers develop chip part that could double wireless frequency capacity +