Toggle light / dark theme

On May 20, during her speech at the Annual EU Budget Conference 2025, Ursula von der Leyen, President of the European Commission, stated:

When the current budget was negotiated, we thought AI would only approach human reasoning around 2050. Now we expect this to happen already next year. It is simply impossible to determine today where innovation will lead us by the end of the next budgetary cycle. Our budget of tomorrow will need to respond fast.

This is remarkable coming from the highest-ranking EU official. It suggests the Overton window for AI policy has shifted significantly.

The ZEUS laser facility at the University of Michigan has roughly doubled the peak power of any other laser in the U.S. with its first official experiment at 2 petawatts (2 quadrillion watts).

At more than 100 times the global electricity power output, this huge power lasts only for the brief duration of its laser pulse—just 25 quintillionths of a second long.

“This milestone marks the beginning of experiments that move into unexplored territory for American high field science,” said Karl Krushelnick, director of the Gérard Mourou Center for Ultrafast Optical Science, which houses ZEUS.

While romantic relationships are often perceived as a significant milestone, there is increasing evidence of the value of friends within one’s network. The pres…

Scientists studying a promising quantum material have stumbled upon a surprise: within its crystal structure, the material naturally forms one of the world’s thinnest semiconductor junctions—a building block of most modern electronics. The junction is just 3.3 nanometers thick, about 25,000 times thinner than a sheet of paper.

“This was a big surprise,” said Asst. Prof. Shuolong Yang. “We weren’t trying to make this junction, but the material made one on its own, and it’s one of the thinnest we’ve ever seen.”

The discovery offers a way to build ultra-miniaturized electronic components, and also provides insight into how electrons behave in materials designed for quantum applications.

Researchers at the National Synchrotron Light Source II (NSLS-II), a U.S. Department of Energy (DOE) Office of Science user facility at DOE’s Brookhaven National Laboratory, depend on the facility’s bright, stable electron beam to carry out groundbreaking experiments. Behind the scenes, a dedicated team of physicists, engineers, designers, and technicians in the facility’s accelerator complex are not only maintaining this system for reliable operation but also looking into ways to improve performance and unlock new areas of synchrotron science for the light source’s research community.

In an inventive new design that has been years in the making, the team has unveiled a proof-of-principle prototype for a new “complex bend” lattice design. This unique magnet array has sparked discussion about some intriguing possibilities for the future of NSLS-II’s , and the design is lighting the way for necessary next steps.

Transistors are the fundamental building blocks behind today’s electronic revolution, powering everything from smartphones to powerful servers by controlling the flow of electrical currents. But imagine a parallel world, where we could apply the same level of control and sophistication—not to electricity, but to heat.

This is precisely the frontier being explored through quantum thermal , devices designed to replicate electronic transistor functionality at the quantum scale, but for heat.

The rapidly growing field of quantum thermodynamics has been making impressive strides, exploring how heat and energy behave when quantum mechanical effects dominate. Innovations such as quantum thermal diodes, capable of directing in a specific direction, and quantum thermal transistors, which amplify heat flows similarly to how electronic transistors amplify electric signals, are groundbreaking examples of this progress.

My telescope, set up for astrophotography in my light-polluted San Diego backyard, was pointed at a galaxy unfathomably far from Earth. My wife, Cristina, walked up just as the first space photo streamed to my tablet. It sparkled on the screen in front of us.

“That’s the Pinwheel galaxy,” I said. The name is derived from its shape—albeit this pinwheel contains about a trillion stars.

The light from the Pinwheel traveled for 25 million years across the universe—about 150 quintillion miles—to get to my telescope.

Understanding Jupiter’s early evolution helps illuminate the broader story of how our solar system developed its distinct structure. Jupiter’s gravity, often called the “architect” of our solar system, played a critical role in shaping the orbital paths of other planets and sculpting the disk of gas and dust from which they formed.

In a new study published in the journal Nature Astronomy, Konstantin Batygin, professor of planetary science at Caltech; and Fred C. Adams, professor of physics and astronomy at the University of Michigan; provide a detailed look into Jupiter’s primordial state.

Their calculations reveal that roughly 3.8 million years after the solar system’s first solids formed—a key moment when the disk of material around the sun, known as the protoplanetary nebula, was dissipating—Jupiter was significantly larger and had an even more powerful magnetic field.

Plants that reproduce exclusively by self-pollination arise from populations with extremely low diversity to begin with. Kobe University research not only adds a facet to possible evolutionary strategies, but also lends weight to Darwin’s suspicion that this strategy might be a path to extinction.

Charles Darwin once remarked, “It is hardly an exaggeration to say that nature tells us, in the most emphatic manner, that she abhors perpetual self-fertilization.” And yet, Kobe University botanist Suetsugu Kenji knows of a few islands in Japan where orchids reproduce without ever opening their flowers.

He says, “I’ve long been captivated by Darwin’s skepticism about plants that rely entirely on self-pollination. When I found those non-blooming orchids, I felt this was a perfect chance to directly revisit this issue. The apparent defiance of evolutionary common sense made me wonder what precise conditions—both environmental and genetic—would allow a purely self-pollinating lifestyle to emerge, let alone persist.”

Proteins are among the most studied molecules in biology, yet new research from the University of Göttingen shows they can still hold surprising secrets. Researchers have discovered previously undetected chemical bonds within archived protein structures, revealing an unexpected complexity in protein chemistry.

These newly identified nitrogen-oxygen-sulfur (NOS) linkages broaden our understanding of how proteins respond to , a condition where harmful oxygen-based molecules build up and can damage proteins, DNA, and other essential parts of the cell. The new findings are published in Communications Chemistry.

The research team systematically re-analyzed over 86,000 high-resolution protein structures from the Protein Data Bank, a global public repository of protein structures, using a new algorithm that they developed inhouse called SimplifiedBondfinder. This pipeline combines , quantum mechanical modeling, and structural refinement methods to reveal subtle that were missed by conventional analyses.