Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Atmosphere Detected on Ultra-Hot Rocky World

“What really sets this planet apart is its anomalously low density. It is less dense than you would expect if it had an Earth-like composition,” said Dr. Johanna Teske.


What can a rocky molten exoplanet with an atmosphere teach astronomers about planetary formation and evolution? This is what a recent study published in The Astrophysical Journal Letters hopes to address as a team of scientists investigated a thick atmosphere enveloping an exoplanet where previous hypotheses state it shouldn’t exist. This study has the potential to help scientists not only challenge longstanding hypotheses regarding exoplanets but also gain new insight into planetary formation and evolution.

For the study, the researchers used NASA’s James Webb Space Telescope (JWST) to observe TOI-561 b, which is located approximately 86 parsecs (280 light-years) from Earth and whose radius is 1.4 times of Earth. What makes TOI-561 unique is its orbit is only 11 hours long, resulting in an equilibrium temperature of approximately 2,500 Kelvin (2,227 degrees Celsius/4,040 degrees Fahrenheit).

Scientists Uncover How Tiny “Nanopores” Learn Like the Brain

Scientists found that nanopores’ electrical charges control how ions flow and when pores temporarily shut down. The discovery could allow engineers to design nanopores that “learn” like synapses for next-generation computing.

Pore-forming proteins appear across many forms of life. In humans, they help protect the body by supporting immune defenses. In bacteria, they often function as toxins that create openings in cell membranes. These natural pores regulate the movement of ions and molecules, and their precise control over molecular transport has made them valuable in biotechnology, including DNA sequencing and molecular sensing.

Unpredictable Behavior in Ion Flow.

Time might not exist — and we’re starting to understand why

Consider two events, A and B, such as flashes of light made by two sources in different places.

Cause and effect means there are three possibilities: 1) Flash A happened before flash B, and via some mechanism, could have triggered B; 2) Flash B happened before Flash A and could have triggered it; 3) Neither one could have triggered the other because they are too far apart in space and too close in time for a triggering signal to have been sent from one location to the other.

Now, Einstein’s Special Theory of Relativity states that all observers, no matter how fast they’re moving relative to each other, see light travelling at the same constant speed.

This strange but simple fact can lead to observers seeing events happening in different orders.

For option above, two observers moving relative to each other close to the speed of light might disagree on the ordering of flashes.

Thankfully, there’s no danger of an effect coming before its cause (known as a ‘violation of causality’) since the events are too far apart for either to cause the other.

However, what if options and coexisted in a quantum superposition? The causal order of the two events would no longer be fixed.

Psoriasis rates rise globally, with highest burden in wealthier regions

Researchers in China report that global incidence rates of psoriasis rose slightly from 1990 to 2021 and are projected to continue rising for both men and women through 2050.

Psoriasis is a chronic inflammatory skin disease that continues to impose a growing global burden. Understanding the rate of increase is critical for informing public health strategies, improving health care access, and supporting early diagnosis worldwide.

In the study, “Global Psoriasis Burden and Forecasts to 2050,” published as a Research Letter in JAMA Dermatology, researchers used a time-series forecasting analysis to project global psoriasis incidence through 2050 and to address age, sex, and regional differences in burden.

Where does Everything come from?

Sharpen your logic skills with Brilliant! Start learning for free at https://brilliant.org/sabine/ and get 20% off a premium subscription, which includes daily unlimited access!

The universe is full of a seemingly unending number of different things, from subatomic particles to plants and animals to gas giants and supernovae. But where did all of this stuff (for lack of a better word) come from? Let’s take a look.

👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ / sabine.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 📚 Buy my book ➜ https://amzn.to/3HSAWJW #science #physics #philosophy.
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
📚 Buy my book ➜ https://amzn.to/3HSAWJW

#science #physics #philosophy

From fullerenes to 2D structures: A unified design principle for boron nanostructures

Boron, a chemical element next to carbon in the periodic table, is known for its unique ability to form complex bond networks. Unlike carbon, which typically bonds with two or three neighboring atoms, boron can share electrons among several atoms. This leads to a wide variety of nanostructures. These include boron fullerenes, which are hollow, cage-like molecules, and borophenes, ultra-thin metallic sheets of boron atoms arranged in triangular and hexagonal patterns.

Dr. Nevill Gonzalez Szwacki has developed a model explaining the variety of boron nanostructures. The analysis, published in the journal 2D Materials, combines more than a dozen known boron nanostructures, including the experimentally observed B₄₀ and B₈₀ fullerenes.

Using first-principles quantum-mechanical calculations, the study shows that the structural, energetic, and electronic properties of these systems can be predicted by looking at the proportions of atoms with four, five, or six bonds. The results reveal clear links between finite and extended boron structures. The B₄₀ cage corresponds to the χ₃ borophene layer, while B₆₅, B₈₀, and B₉₂ connect with the β₁₂, α, and bt borophene sheets, respectively. These structural links suggest that new boron cages could be created by using known two-dimensional boron templates.

Plant hormone allows lifelong control of proteins in living animal for first time

Researchers have found a way to control protein levels inside different tissues of a whole, living animal for the first time. The method lets scientists dial protein levels up or down with great precision during the animal’s entire life, a technological advance which can help them study the molecular underpinnings of aging and disease.

Scientists at the Center for Genomic Regulation in Barcelona and the University of Cambridge successfully tested the technique by controlling how much protein was present in the intestines and neurons of the nematode worm Caenorhabditis elegans. Their findings are described in the journal Nature Communications.

Abstract: ZMIZ1 and estrogen receptor α form an essential partnership in endometrial biology:

This Commentary by Md Saidur Rahman, Kyeong A. So & Jae-Wook Jeong discusses Sylvia C. Hewitt et al.: https://doi.org/10.1172/JCI193212


1Department of Obstetrics, Gynecology & Women’s Health, University of Missouri School of Medicine, Columbia, Missouri, USA.

2Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, Republic of Korea.

Address correspondence to: Jae-Wook Jeong, 1,030 Hitt Street, NextGen Precision Health Building, Columbia, Missouri 65,211, USA. Phone: 573.884.1882; Email: [email protected].

/* */