Toggle light / dark theme

A first step in establishing repair standards on satellite in space; wonder could we eventually see a version of the EPA or in space.


SAN FRANCISCO — The U.S. Defense Research Projects Agency plans to establish a consortium to discuss standards and practices for on-orbit satellite servicing as a corollary to Robotic Servicing of Geostationary Satellites (RSGS), an effort to develop robotic spacecraft to inspect, repair and move other satellites.

“Our fear was that we would create a robotic servicing capability through RSGS and when our industry partner went to Lloyds of London for insurance, someone would say, ‘You have no authority to conduct that mission,’” said Brad Tousley, director of DARPA’s Tactical Technology Office.

Through the construction and operation of the International Space Station, the international community has established laws and regulations concerning government spacecraft conducting rendezvous and proximity operations with other government spacecraft as well as government spacecraft conducting rendezvous and proximity operations with commercial spacecraft.

Another discovery from a rocket launch.


A sensitive quantum device, designed to operate on a nanosatellite, was recovered from explosion debris and displays no degradation in quality.

Quantum key distribution (QKD), i.e., using quantum signals to generate secure symmetric key material at distant sites, is of much interest for quantum communications because of its high level of privacy (underpinned by quantum mechanics). In particular, entanglement-based QKD1 is a powerful technique in which quantum correlations between photons are leveraged. In this process, the entangled photons can be distributed with the use of optical fibers or ground-level free-space links. Current QKD networks, however, suffer from a distance limit because of fiber losses2, 3 and the lack of quantum repeaters.4

More info. on some research that I came across a few weeks ago on a new bioimaging technique to help map and understand the nervous system which is one of the hardest areas of the brain to map and monitor — this is truly groundbreaking on so many fronts such as precision meds. research, computer mapping of the brain and neuro pathways, etc. If will be very impressive to see how much this accelerates the efforts in finding a cure for diseases such as Dystonia.


MUNICH, Germany, Aug. 22 (UPI) — Scientists at Ludwig Maximilian University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity.

Researchers are hopeful the new and improved view will help scientists understand how traumatic brain injuries, strokes and aging yield chronic disorders like dementia and epilepsy.

Read more

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Rice physicists are closing in on a way to create a new state in which all the electrons in a material act as one by manipulating them with and a magnetic field. The effect made possible by a custom-built, finely tuned cavity for terahertz radiation shows one of the strongest light-matter coupling phenomena ever observed.

The work by Rice physicist Junichiro Kono and his colleagues is described in Nature Physics. It could help advance technologies like quantum computers and communications by revealing new phenomena to those who study cavity quantum electrodynamics and , Kono said.

Read more

I can see ads now with Ozzy’s “Crazy Train” playing in the background.


There’s no doubt India needs faster trains. The NDA government has set the ball rolling by launching the Gatimaan Express. Trials are on with the Spanish Talgo trains on the Delhi-Mumbai route and Japan has agreed to provide soft loans for the proposed Mumbai-Ahmedabad bullet train. But, for achieving a one-time quantum jump in technology, the possibility of introducing the Hyperloop—Tesla’s Elon Musk’s concept of moving people and goods at high speeds in capsules within tubes using powerful magnets—could be a game-changer. Going by current speeds, Hyperloop can crunch a one-way Delhi-Mumbai trip to just one hour. The advantages are numerous—much faster travel, limited land acquisition and lower building cost that could lead to cheaper travel.

It is still early days as far as Hyperloop is concerned. Two companies, Hyperloop Technologies and Hyperloop Transportation Technologies, are in talks with 10 countries including China and India for introduction.

India’sinfrastructural issues could find faster resolution with Hyperloop’s faster build-out compared to the bullet train where land acquisition could be a problem. India is considering various options to speed up the Railways—this is one that the government should look at closely, given the technological leap-frogging it provides in high-speed connectivity between cities.

Matterless wormhole theory predicts a potential universal wormhole. Researcher James Goetz theorizes that extra-dimensional relativity indicates a possible omnicluster of matterless wormholes or in other words a universal wormhole. Amazing properties of the wormhole include no dimensions and zero distance to all points in the universe. Moreover, a hypothetical observer in the wormhole could observe a universal chronology despite the relativity of time. This modifies the theory of relativity.

The theory is part of Goetz’s introduction to the natural theology called semiclassical theism. Goetz proposes a model of God, time, and creation that fits with modern physics, such as relativity, quantum mechanics, quantum gravity, Big Bang cosmology, zero-energy universe and multiverse geometry. This is a theory of everything.

Apart from physics, the universal wormhole theory helps to explain the theology of divine omniscience and omnipresence. Also, semiclassical theism proposes that God is omnipresent in tenseless eternity and tensed creation.

Read more

Actually, I know many scientists and techies who hang out with the average Joe or Jill to get their minds off of being 1 dimensional and as a result gives them the recharge they need for innovation and creativity.


Quantum physicists studying the edges of our understanding of the universe are reportedly very eager to hear what Frank down at the local reckons they should study next, following Treasurer Scott Morrison’s warning that research should pass the ‘pub test’.

Morrison warned against esoteric, pointless research that costs an abundance of public money and has only lead to major, world-changing breakthroughs in unexpected areas a few times. Instead, the Treasurer has advised that before engaging in any boring and elitist research that only people specifically studying the field would care about, scientists should head down to the pub and check in with Frank to see what he thinks.

“We’ve very excited about this prospect,” said one researcher. “I’m curious to see if Frank will want to push us towards completing the standard model of matter, you know, the search for the graviton — will he prefer it if we go in depth on dark matter and really try and crack that code — who knows, really! It’s all up to Frank.

Congrats Hong Kong Univ.


Researchers at The Hong Kong University of Science and Technology (HKUST) have fabricated microscopically-small lasers directly on silicon, enabling the future-generation microprocessors to run faster and less power-hungry – a significant step towards light-based computing.

The innovation, made by Prof Kei-may Lau, Fang Professor of Engineering and Chair Professor of the Department of Electronic and Computer Engineering, in collaboration with the University of California, Santa Barbara; Sandia National Laboratories and Harvard University, marks a major breakthrough for the semiconductor industry and well beyond.

Silicon forms the basis of everything from solar cells to the integrated circuits at the heart of our modern electronic gadgets. However, the crystal lattice of silicon and of typical laser materials could not match up, making it impossible to integrate the two materials until now, when Prof Lau’s group managed to integrate subwavelength cavities — the essential building blocks of their tiny lasers — onto silicon, allowing them to create and demonstrate high-density on-chip light-emitting elements. The finding was recently published as the cover story on Applied Physics Letters.

I’ve been reading Ramez Naam’s fantastic book “Nexus,” which is set in a near-future where a powerful nano-drug allows human minds to connect together. In the story, a group of enterprising neuroscientists and engineers discover they can use the drug in a new way — to run a computer operating system inside their brains. Naam’s characters telepathically communicate with each other using a mental chat app and even manipulate other people’s bodies by gaining control of their brains’ operating systems.

Sounds far-fetched, right?

It might not be as far-fetched as you think. From connecting a human brain to a basic tablet to help a paralyzed patient communicate with the outside world to memory-boosting brain implants and a prototype computer chip that runs on live neurons — the real world progress we’re seeing today is nearly as strange as fiction.

Read more