Toggle light / dark theme

NANOG. I just like the sound of it.


In the biology lab-based equivalent of Indiana Jones and the Last Crusade, researchers from the University at Buffalo have uncovered the human body’s internal fountain of eternal youth, in the form of a gene called NANOG. When expressing this gene in aged stem cells, the team found that it reactivated certain processes that had become exhausted, restoring their ability to develop into fully functioning muscle cells.

As we go about our lives, wear and tear causes the body’s cells to die via a process called senescence. When this occurs, new cells are created from stem cells in order to replace those that have become senescent, although when we hit old age our stem cells become depleted or unable to develop.

Mesenchymal stem cells (MSCs), for example, normally develop into smooth muscle cells (SMCs). However, once we reach a certain age, these MSCs lose their efficacy and start generating SMCs that lack a protein called actin, rendering them unable to contract like healthy muscle tissue should.

Interesting…


However, new research carried out at the University of Waterloo and University of Lethbridge, in Canada, argues there is a much longer measureable minimum unit of time.

If true, the existence of such a minimum time changes the basic equations of quantum mechanics.

This means our understanding of how the universe operates on a very small scale may need to reconsidered.

Physicists assert that they have observed quantum spin liquid state again; however, this time, they have done so in a material where it was thought to be impossible. If verified, it could transform how we understand quantum computing.

Back in April, the physics world freaked out when scientists confirmed that they’d made the first direct observation of a brand-new state of matter – known as quantum spin liquid – for the first time.

But now a team of physicists has just announced that they’ve observed quantum spin liquid state again… and this time in a material where it should be impossible.

Read more

A new method for medicine.


Imagine a cross between one of those multi-color retractable pens and an epi-pen. But instead of colors, the device would have different medications. Now combine this with a tiny, droplet-sized sweatshop full of obedient single-celled organisms genetically engineered to produce those medications, and you’ve got what a team from MIT just published in Nature Communications: A new project, with funding from DARPA, that has demonstrated the ability to synthesize multiple medications on-demand and as-needed using yeast. The discovery could soon revolutionize our ability to deliver medicine after natural disasters or to remote locations.

Let’s stick with the metaphor of an epi-pen. First, the user presses the actuator, which mixes a chemical trigger into a culture of engineered Pichia pastoris cells. Upon exposure to certain chemical triggers, the cells are programmed to produce a protein: in the report, the team used estrogen β-estradiol, which caused the cells to express recombinant human growth hormone (rHGH), and also methanol, which induced the same culture of yeast to make interferon. By controlling the concentration of the chemical trigger and the population of P. pastoris, the team demonstrated that they could make their device produce a dose of either interferon or rHGH on command. To switch between products, they just pushed another button on the microbioreactor, which flushes out the cell culture with clean, sterile fluid.

“…rapid and switchable production of two biologics from a single yeast strain as specified by the operator.” –Lu, Ram et al

Smart bricks capable of recycling wastewater and generating electricity from sunlight are being developed by a team of scientists from the University of the West of England (UWE Bristol). The bricks will be able to fit together and create ‘bioreactor walls’ which could then be incorporated in housing, public building and office spaces.

The UWE Bristol team is working on the smart technologies that will be integrated into the in this pan European ‘Living Architecture’ (LIAR) project led by Newcastle University. The LIAR project brings together living architecture, computing and engineering to find a new way to tackle global sustainability issues.

The smart living bricks will be made from bio-reactors filled with microbial cells and algae. Designed to self-adapt to changing environmental conditions the smart bricks will monitor and modify air in the building and recognise occupants.

Read more