Toggle light / dark theme

Using observations by NASA’s TESS (Transiting Exoplanet Survey Satellite) and many other facilities, two international teams of astronomers have discovered a planet between the sizes of Earth and Venus only 40 light-years away. Multiple factors make it a candidate well-suited for further study using NASA’s James Webb Space Telescope.

TESS stares at a large swath of the sky for about a month at a time, tracking the brightness changes of tens of thousands of stars at intervals ranging from 20 seconds to 30 minutes. Capturing transits — brief, regular dimmings of stars caused by the passage of orbiting worlds — is one of the mission’s primary goals.

“We’ve found the nearest, transiting, temperate, Earth-size world located to date,” said Masayuki Kuzuhara, a project assistant professor at the Astrobiology Center in Tokyo, who co-led one research team with Akihiko Fukui, a project assistant professor at the University of Tokyo. “Although we don’t yet know whether it possesses an atmosphere, we’ve been thinking of it as an exo-Venus, with similar size and energy received from its star as our planetary neighbor in the solar system.”

As ESA’s satellite INTEGRAL scanned the skies, it detected a surge of gamma-rays emanating from the nearby galaxy M82. Shortly after this observation, ESA’s XMM-Newton X-ray space telescope sought any residual glow from the event but detected nothing. An international research group, with contributors from the University of Geneva (UNIGE), concluded that the burst was an extragalactic flare from a magnetar, a young neutron star known for its intense magnetic field. This finding was documented in the journal Nature.

On 15 November 2023, ESA’s satellite INTEGRAL spotted a sudden explosion from a rare object. For only a tenth of a second, a short burst of energetic gamma-rays appeared in the sky. “The satellite data were received in the INTEGRAL Science Data Centre (ISDC), based on the Ecogia site of the UNIGE Astronomy Department, from where a gamma-ray burst alert was sent out to astronomers worldwide, only 13 seconds after its detection,” explains Carlo Ferrigno, senior research associate in the Astronomy Department at UNIGE Faculty of Science, PI of the ISDC and co-author of the publication. The IBAS (Integral Burst Alert System) software gave an automatic localization coinciding with the galaxy M82, 12 million light-years away. This alert system was developed and is operated by scientists and engineers from the UNIGE in collaboration with international colleagues.

A Stanford Medicine study reveals six subtypes of depression, identified through brain imaging and machine learning. These subtypes exhibit unique brain activity patterns, helping predict which patients will benefit from specific antidepressants or behavioral therapies. This approach aims to personalize and improve depression treatment efficacy.

In the not-too-distant future, a quick brain scan during a screening assessment for depression could identify the best treatment.

According to a new study led by researchers at Stanford Medicine, brain imaging combined with a type of AI called machine learning can reveal subtypes of depression and anxiety. The study, to be published today (June 17) in the journal Nature Medicine, sorts depression into six biological subtypes, or “biotypes,” and identifies treatments that are more likely or less likely to work for three of these subtypes.

MIT neuroscientists propose a new framework that describes how thought arises from the coordination of neural activity driven by oscillating electric fields — a.k.a. brain “waves” or “rhythms.”

It could be very informative to observe the pixels on your phone under a microscope, but not if your goal is to understand what a whole video on the screen shows. Cognition is much the same kind of emergent property in the brain. It can only be understood by observing how millions of cells act in coordination, argues a trio of MIT neuroscientists. In a new article, they lay out a framework for understanding how thought arises from the coordination of neural activity driven by oscillating electric fields — also known as brain “waves” or “rhythms.”

The Significance of Brain Rhythms.

The capacity to adjust beliefs about one’s actions and their consequences in a constantly changing environment is a defining characteristic of advanced cognition. Disruptions to this ability, however, can negatively affect cognition and behavior, leading to such states of mind as paranoia, or the belief that others intend to harm us.

In a new study, Yale scientists uncover how one specific region of the brain might causally provoke these feelings of paranoia.

Their novel approach — which involved aligning data collected from monkeys with human data — also offers a new cross-species framework through which scientists might better understand human cognition through the study of other species.

A team from Nagoya University invented a heat-switch device for lunar rovers to withstand the Moon’s extreme temperatures. The technology optimizes thermal control, alternating between cooling and insulating, facilitating longer missions with less energy.

Astronauts navigating the moon’s terrain in a vehicle contend with not only the perils of zero gravity and potential crater falls, but also drastic temperature swings. The moon’s climate ranges from searing highs of 127°C (260°F) to bone-chilling lows of −173°C (−280°F).

Team from Nagoya University in Japan developed a heat-switch device designed to enhance the durability of lunar rovers. Their collaborative research with the Japan Aerospace Exploration Agency was featured in the journal Applied Thermal Engineering.

In 2024, extensive flooding in southern Brazil caused significant damage, particularly in Rio Grande do Sul. Maps showing floodwater depths were vital for disaster response and economic damage assessments, supported by data from NASA and other scientific sources.

Storms and torrential rain battered southern Brazil beginning in late April 2024, causing deadly, destructive flooding that persisted through much of May. Toward the end of the month, parts of Rio Grande do Sul state remained underwater, and the scope of the damage became increasingly evident.

Maps of floodwater extent are one way to assess a flooding event. But information about the depth of that water is also useful, potentially aiding rescue and relief operations, informing decisions about road closures and accessibility, and contributing to analyses of damage and flood risk.

The SETI Institute has launched a new grants program to support the advancement of technosignature science, utilizing the Allen Telescope Array (ATA), a crucial observatory in the search for extraterrestrial technology. This program, the first of its kind, will fund research ranging from observational techniques to theoretical models in technosignature science, with grants available for non-tenured faculty and post-prelim graduate students. Credit: SETI Institute.

The SETI Institute’s new grants program supports advanced research in detecting extraterrestrial technosignatures with grants up to $100,000, leveraging the capabilities of the Allen Telescope Array.

The SETI Institute has introduced a groundbreaking grants program focused on advancing technosignature science. This unique initiative is designed to fund innovative research that tackles essential observational, theoretical, and technical challenges in the quest for technosignatures, which may reveal signs of past or present extraterrestrial technology.

Researchers have discovered sex-specific differences in the nerve cells that generate pain, paving the way for personalized pain management treatments based on patient sex.

Research indicates that men and women experience pain differently, but the reasons behind this have remained unclear. A new study from the University of Arizona Health Sciences, published in the journal BRAIN, has now identified functional sex differences in nociceptors, the specialized nerve cells that produce pain.

The findings support the implementation of a precision medicine-based approach that considers patient sex as fundamental to the choice of treatment for managing pain.

A synthetic skin for prosthetics limbs that can generate its own energy from solar power has been developed by engineers from Glasgow University.

Researchers had already created an ‘electronic skin’ for prosthetic hands made with new super-material graphene.

The new skin was much more sensitive to touch but needed a power source to operate its sensors.