Toggle light / dark theme

Doctors have lots of tools for predicting a patient’s health. But—as even they will tell you—they’re no match for the complexity of the human body. Heart attacks in particular are hard to anticipate. Now, scientists have shown that computers capable of teaching themselves can perform even better than standard medical guidelines, significantly increasing prediction rates. If implemented, the new method could save thousands or even millions of lives a year.

“I can’t stress enough how important it is,” says Elsie Ross, a vascular surgeon at Stanford University in Palo Alto, California, who was not involved with the work, “and how much I really hope that doctors start to embrace the use of artificial intelligence to assist us in care of patients.”

Each year, nearly 20 million people die from the effects of cardiovascular disease, including heart attacks, strokes, blocked arteries, and other circulatory system malfunctions. In an effort to predict these cases, many doctors use guidelines similar to those of the American College of Cardiology/American Heart Association (ACC/AHA). Those are based on eight risk factors—including age, cholesterol level, and blood pressure—that physicians effectively add up.

Read more

It’s tricky to bring transhumanism into sharp focus. As with, say, feminism, the meaning of the word varies hugely between individuals who identify with it, and the level of commitment may vary between an occasional affirmation or a crusading passion. Like feminism, transhumanism has many factions, often at war with one another, or with the broader culture; as with feminism, a lot of people identify as transhumanist without spending much time learning what those who coined the term were actually on about. Transhumanism broadly considers technology as an emancipatory route to individual and/or collective transcendence over the ‘limitations’ of the human condition.

Read more

“A future without animal testing is getting closer. On Tuesday, the Food and Drug Administration agreed to a research-and-development collaboration with Emulate, a company that makes “organs-on-chips” technology.

The hope is that instead of testing new drugs or supplements on animals, researchers can use Emulate’s chips.

To start, the collaboration between the FDA and Emulate will focus on the company’s Liver-Chips, which are meant to show how an animal’s liver may react to a certain drug.

Read more

Scientists literally pulled this out of thin air.

Engineers at MIT and the University of California Berkeley have designed a system, powered by sunlight, that can turn air into liters of drinkable water.

This box has the potential to help drought-stricken communities, desert explorers or — someday — astronauts traveling to dry, dusty planets. The report was a href=” http://science.sciencemag.org/content/early/2017/04/12/science.aam8743” target=”_blank”

Read more

China’s minimum living standard guarantee, named dibao, is receiving fresh interest in the region as countries from Korea to India turn to universal basic income (UBI) to boost their economies and combat the coming automation-induced job crisis.


Asia-Pacific countries are beginning to consider their own form of universal basic income in the face of an automation-induced jobs crisis.

By David Green

Read more

A team of researchers led by Caltech’s Hyuck Choo has developed an eye implant for glaucoma patients that could one day lead to more timely and effective treatment.

If you have ever been to an ophthalmologist, you have probably had your checked: with your chin resting on a support to keep your head still, the doctor applies pressure to your eye either via a puff of warm air or by gently pressing a probe against the eye’s . By measuring the amount that surface deforms as a result of a known amount of pressure, the ophthalmologist can calculate a rough estimate of the intraocular pressure.

While effective enough for routine eye exams, the technique is not sufficient for patients suffering from glaucoma. Glaucoma affects more than 2 million people in the United States, and is the second leading cause of blindness after cataracts. It is actually a family of eye diseases that are characterized by an increase in the pressure of the fluid inside the eye. That pressure damages the optic nerve at the back of the eye.

Read more

The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from different technologies.

The team, working with JQI Fellow Christopher Monroe and led by postdoctoral researcher Norbert Linke, sized up their own small-scale against a device built by IBM. Both machines use five qubits—the fundamental units of information in a quantum computer—and both machines have similar error rates. But while the JQI device relies on chains of trapped atomic ions, IBM Q uses coupled regions of superconducting material.

To make their comparison, the JQI team ran several quantum programs on the devices, each of which solved a simple problem using a series of logic gates to manipulate one or two qubits at a time. Researchers accessed the IBM device using an online interface, which allows anyone to try their hand at programming IBM Q.

Read more