Menu

Blog

Page 10616

Dec 15, 2016

This Device Can Bypass Spinal Injuries to Help Defeat Paralysis

Posted by in categories: biotech/medical, neuroscience

Nice.


Doctors in the US have developed a stimulator that bypasses spinal injuries by forcing the body to use alternative pathways to transmit signals from the brain to other areas of the body.

Continue reading “This Device Can Bypass Spinal Injuries to Help Defeat Paralysis” »

Dec 15, 2016

How brain tissue recovers after injury

Posted by in categories: biotech/medical, neuroscience

Nice write up.


A research team led by Associate Professor Mitsuharu ENDO and Professor Yasuhiro MINAMI (both from the Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University) has pinpointed the mechanism underlying astrocyte-mediated restoration of brain tissue after an injury. This could lead to new treatments that encourage regeneration by limiting damage to neurons incurred by reduced blood supply or trauma. The findings were published on October 11 in the online version of GLIA ahead of print release in January 2017.

When the brain is damaged by trauma or ischemia (restriction in blood supply), immune cells such as macrophages and lymphocytes dispose of the damaged neurons with an inflammatory response. However, an excessive inflammatory response can also harm healthy neurons.

Continue reading “How brain tissue recovers after injury” »

Dec 15, 2016

Columbia University reveal what your brain looks like when you ‘zone out’

Posted by in categories: biotech/medical, neuroscience

Pretty wild.


A mesmerising new video reveals how neuronal signaling changes blood flow through the brain. Image shows patterns of brain activity occurring across the bilateral cortex of an awake mouse. Colours indicate different patterns of activity over time.

Continue reading “Columbia University reveal what your brain looks like when you ‘zone out’” »

Dec 15, 2016

The neuroscience behind imagination

Posted by in categories: cosmology, education, neuroscience

Trying to simplify and understand imagination isn’t that easy. Should be a great read for my tech friends trying to replicate this process.


Imagination… we can all imagine things – even things we have never seen before. Even things that don’t exist. How do our brains achieve that?

Continue reading “The neuroscience behind imagination” »

Dec 15, 2016

This Non-Invasive Brain Cap Allows People to Control a Robotic Arm with Their Minds

Posted by in categories: biotech/medical, robotics/AI

Although this still looks like you’re part of a medical experiment; it is in fact a step forward in BMI progress as it is non-invasive & not bulky as the other BMI technology that I have seen. With the insights we’re able to collect from this model plus prove 80% accuracy in the neuro communication means next generations will be able to focus on materials to make the model more and more seamless. So, it is very promising.


A new non-invasive brain-computer interface allows people to control a robotic arm using only their minds.

Continue reading “This Non-Invasive Brain Cap Allows People to Control a Robotic Arm with Their Minds” »

Dec 15, 2016

TTFields Prolong Overall Survival in Glioblastoma

Posted by in categories: biotech/medical, neuroscience

Very promising for Giloblastoma patients.


Adding Tumor Treating Fields (TTFields) to maintenance temozolomide significantly prolongs both median and long-term survival.

Among patients with newly diagnosed glioblastoma multiforme, adding Tumor Treating Fields (TTFields) to maintenance temozolomide significantly prolongs both median and long-term survival, according to a study presented 21st Annual Scientific Meeting of the Society of Neuro-Oncology (SNO).

Continue reading “TTFields Prolong Overall Survival in Glioblastoma” »

Dec 15, 2016

Anti-tumor effect of novel plasma medicine caused by lactate

Posted by in categories: biotech/medical, neuroscience

Physical plasma is one of the four fundamental states of matter, together with solid, liquid, and gas, and can be completely or partially ionized (thermal/hot or non-thermal/cold plasma, respectively). Non-thermal plasma has many industrial applications, but plasma medicine is a new field of therapy based on non-thermal atmospheric pressure plasma that has been used in cancer treatment, wound healing, and blood coagulation. Plasma is known to react with air to produce highly reactive free radicals, and with liquid to produce long-lived reactive molecules that can be used for chemotherapy. However, the exact components responsible for the anti-tumor effects were unknown.

Now, a research team based at Nagoya University used plasma to activate Ringer’s solution, a salt solution with existing therapeutic functions, and showed that its lactate component had anti-tumor effects.

Previous work by the researchers developed plasma-activated cell culture medium as a form of chemotherapy, but selected Ringer’s solution in the present work because of its simpler composition and likelihood of forming less complex reaction products. Ringer’s lactate solution (Lactec) was irradiated with plasma for 3–5 minutes, after which it demonstrated anti-tumor effects on brain tumor cells.

Continue reading “Anti-tumor effect of novel plasma medicine caused by lactate” »

Dec 15, 2016

New structure shows how cells assemble protein-making machinery

Posted by in categories: chemistry, nanotechnology, particle physics, robotics/AI

Scientists at The Rockefeller University have created the most detailed three-dimensional images to date of an important step in the process by which cells make the nano-machines responsible for producing all-important protein. The results, described December 15 in Science, are prompting the researchers to re-evaluate how they envision this early phase in the construction of ribosomes.

“The structure they determined, shown above, belongs to a particle formally called the “small subunit processome.” Before this particle can fulfill its destiny to become the smaller half of a complete ribosome, the RNA within it needs to be folded, tweaked, and cut.

“Initially, we thought of the small subunit processome as a product on an assembly line, with molecular workers arriving from outside, much like the robots that would put together a car. But that analogy no longer appears apt,” says senior author Sebastian Klinge, head of the Laboratory of Protein and Nucleic Acid Chemistry.

Continue reading “New structure shows how cells assemble protein-making machinery” »

Dec 15, 2016

Fast track control accelerates switching of quantum bits

Posted by in categories: computing, nanotechnology, quantum physics

From laptops to cellphones, technology advances through the ever-increasing speed at which electric charges are directed through circuits. Similarly, speeding up control over quantum states in atomic and nanoscale systems could lead to leaps for the emerging field of quantum technology.

An international collaboration between physicists at the University of Chicago, Argonne National Laboratory, McGill University, and the University of Konstanz recently demonstrated a new framework for faster control of a quantum bit. First published online Nov. 28, 2016, in Nature Physics, their experiments on a single electron in a diamond chip could create quantum devices that are less prone to errors when operated at high speeds.

Read more

Dec 15, 2016

This Strange Material Could Reveal The Link Between Classical Physics And The Quantum Realm

Posted by in categories: materials, quantum physics

https://youtube.com/watch?v=8BhG9ir4-4E

With the help of this material, scientists are a little bit closer to unlocking the mystery of how the rules of the quantum realm translate to the rules of the classical physics of the observable world.

Experts predict that the materials used in this research, topological insulators, will play a key role in furthering this development.

Continue reading “This Strange Material Could Reveal The Link Between Classical Physics And The Quantum Realm” »