Toggle light / dark theme

Quantum simulation enables scientists to simulate and study complex systems that are challenging or even impossible using classical computers across various fields, including financial modeling, cybersecurity, pharmaceutical discoveries, AI and machine learning. For instance, exploring molecular vibronic spectra is critical in understanding the molecular properties in molecular design and analysis.

The electron shell of atoms acts as an “electromagnetic shield,” preventing direct access to the nucleus and its properties. A team in the group of Klaus Blaum, director at the Max Planck Institute for Nuclear Physics in Heidelberg, has now succeeded in precisely measuring the effect of this shielding in beryllium atoms. The study is published in the journal Nature.

Engineers have designed a tiny battery, smaller than a grain of sand, to power microscopic robots for jobs such as drug delivery or locating leaks in gas pipelines.


A tiny battery designed by MIT engineers could enable the deployment of cell-sized, autonomous robots for drug delivery within in the human body, as well as other applications such as locating leaks in gas pipelines.

The new battery, which is 0.1 millimeters long and 0.002 millimeters thick — roughly the thickness of a human hair — can capture oxygen from air and use it to oxidize zinc, creating a current with a potential of up to 1 volt. That is enough to power a small circuit, sensor, or actuator, the researchers showed.

“We think this is going to be very enabling for robotics,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “We’re building robotic functions onto the battery and starting to put these components together into devices.”

Dr. Scott England: “As the aurora intensifies, you see more lights, but along with that, there’s more energy entering the atmosphere, so it makes the atmosphere near the poles very hot, which starts to push air away from the poles and towards the equator.”


How do powerful geomagnetic storms from the Sun influence the Earth’s atmosphere? This is what two separate studies (Karan et al. (2024) and Evans et al. (2024)) published in Geophysical Research Letters hopes to address as a team of researchers investigated how the geomagnetic storm that occurred between May 10–12, 2024—resulting in worldwide aurorae—impacted the Earth’s thermosphere, which is the Earth’s upper atmosphere extending approximately 70 miles to 130 miles above the Earth’s surface. This study holds the potential to help researchers better understand the short-and long-term effects of geomagnetic storms on the Earth’s atmosphere and how this could influence activities on the surface.

“The northern lights are caused by energetic, charged particles hitting our upper atmosphere, which are impacted by numerous factors in space, including the sun,” said Dr. Scott England, who is an associate professor in the Kevin T. Crofton Department of Aerospace and Ocean Engineering at Virginia Tech and a co-author on both studies. “During solar geomagnetic storms, there’s a lot more of these energetic charged particles in the space around Earth, so we see a brightening of the northern lights and the region over which you can see them spreads out to include places like the lower 48 states that usually don’t see this display.”