Toggle light / dark theme

This past June, 500 pounds of a specially fabricated crystal buried in an Italian mountain seemed to glow just a little brighter. It wasn’t the first time, nor the last—every year, the signal seems to increase and decrease like clockwork as the Earth orbits the Sun.

Some people think the crystal has spotted a signature of elusive dark matter particles.

Scientists from an Italian experiment called DAMA/LIBRA announced at the XLIX meeting of the Gran Sasso Scientific Committee that after another six years observing, the annual modulation of their crystal’s signal is still present. This experiment was specially built to detect dark matter, and indeed, DAMA/LIBRA’s scientists are convinced they’ve spotted the elusive dark matter particle. Others are more skeptical.

Read more

Out of billions of stars in the Milky Way galaxy, there’s one in particular, orbiting 25,000 light-years from the galactic core, that affects Earth day by day, moment by moment. That star, of course, is the sun. While the sun’s activity cycle has been tracked for about two and a half centuries, the use of space-based telescopes offers a new and unique perspective of our nearest star.

The Solar and Heliospheric Observatory (SOHO), a collaboration between NASA and the European Space Agency (ESA), has been in space for more than 22 years — the average length of one completed solar magnetic cycle, according to an image caption from ESA. In the new image, SOHO researchers pulled together 22 images of the sun, taken each spring over the course of a full solar cycle. When the sun is at its most active, strong magnetic fields show up as bright spots in the sun’s outer atmosphere, called the corona; black sunspots appear as concentrations of magnetic fields reduce the sun’s surface temperature during active periods as well.

Throughout the sun’s magnetic cycles, the polarity of the sun’s magnetic field gradually flips. This initial phase takes 11 years, and after another 11 years, the magnetic field’s orientation returns to where it began. Monitoring the entire 22-year cycle provided significant data regarding the interaction between the sun’s activity and Earth, improved space-weather forecasting capabilities and more, ESA officials said in the caption. SOHO has revealed much about the sun itself, capturing “sunquakes,” discovering waves traveling through the corona and collecting details about the charged particles it propels into space, called the solar wind.

Read more

In a paper published on March 15, 2018, in the journal Science, Stanford researchers led by Dr. Dena Leeman showed that intracellular protein aggregates accumulate within the lysosomes of neural stem cells that were previously thought not to suffer from this problem [1].

Intracellular waste disposal 101

Dysfunctional proteins and organelles within a cell constitute intracellular waste that the cell needs to dispose of. To do so, the cell may avail itself of proteasomes and lysosomes. Proteasomes are protein complexes that, with the help of enzymes, break down other, unnecessary proteins into shorter amino acids that can then be recycled to build new, useful proteins. Proteasomes are found within the cell nucleus and in the cytosol—the aqueous solution in which everything in a cell floats. The discovery of proteasomes happened later than that of lysosomes, which, for a while, were thought to be the only cellular waste management systems.

Read more

The aging process is accompanied by a chronic, smoldering background of inflammation that researchers call “inflammaging”. This backdrop of low-grade inflammation contributes significantly to mortality risk in the elderly and has a number of sources.

Today, we are going to take a look at inflammaging and the various known sources that promote this age-related inflammatory condition.

Read more

Autonomous weapon bans (previously) are currently being debated, but in the meantime, the US Department of Defense continues work with its Perdix Micro-Drone project. Ostensibly for surveillance, it’s clear these could easily be modded with lethal weaponry.

F/A-18 Super Hornets deploy the drones, which can then perform a series of tactical maneuvers based on post-launch commands.

Read more

Humanity’s brutal and bellicose past provides ample justification for pursuing settlements on the moon and Mars, Elon Musk says.

The billionaire entrepreneur has long stressed that he founded SpaceX in 2002 primarily to help make humanity a multiplanet species — a giant leap that would render us much less vulnerable to extinction.

Human civilization faces many grave threats over the long haul, from asteroid strikes and climate change to artificial intelligence run amok, Musk has said over the years. And he recently highlighted our well-documented inability to get along with each other as another frightening factor. [The BFR: SpaceX’s Mars Colony Plan in Images].

Read more

“We don’t have any defense that could deny the employment of such a weapon against us,” Air Force Gen. John Hyten, commander of U.Strategic Command, told the Senate Armed Services Committee on Tuesday.

“Both Russia and China are aggressively pursuing hypersonic capabilities,” Hyten added. “We’ve watched them test those capabilities.”

Researchers and engineers at Rand explain what a hypersonic weapon is, which countries are developing them and how the U.S. could look to defend against them.

Read more

Https://paper.li/e-1437691924#/


In the natural world, intelligence takes many forms. It could be a bat using echolocation to expertly navigate in the dark, or an octopus quickly adapting its behavior to survive in the deep ocean. Likewise, in the computer science world, multiple forms of artificial intelligence are emerging — different networks each trained to excel in a different task. And as will be presented today at the 25th annual meeting of the Cognitive Neuroscience Society (CNS), cognitive neuroscientists increasingly are using those emerging artificial networks to enhance their understanding of one of the most elusive intelligence systems, the human brain.

“The fundamental questions cognitive neuroscientists and computer scientists seek to answer are similar,” says Aude Oliva of MIT. “They have a complex system made of components — for one, it’s called neurons and for the other, it’s called units — and we are doing experiments to try to determine what those components calculate.”

In Oliva’s work, which she is presenting at the CNS symposium, neuroscientists are learning much about the role of contextual clues in human image recognition. By using “artificial neurons” — essentially lines of code, software — with neural network models, they can parse out the various elements that go into recognizing a specific place or object.

Scientists are no strangers to healthy debate. You need criticism to strengthen your ideas, and when debate is done right, both parties leave knowing more than they did when they started. But there are some things that will just make a scientist mad. One of those things? Saying their scientific theory isn’t scientific. That’s what a trio of physicists did in a 2017 article they published in Scientific American, which stated that the idea of an expanding universe simply isn’t testable. The response from other physicists? Oh, it’s on.

Read more