Toggle light / dark theme

Realistic climate simulations require huge reserves of computational power. An LMU study now shows that new algorithms allow interactions in the atmosphere to be modeled more rapidly without loss of reliability.

Forecasting global and local climates requires the construction and testing of mathematical . Since such models must incorporate a plethora of physical processes and interactions, climate simulations require enormous amounts of . And even the best models inevitably have limitations, since the phenomena involved can never be modeled in sufficient detail. In a project carried out in the context of the DFG-funded Collaborative Research Center “Waves to Weather”, Stephan Rasp of the Institute of Theoretical Meteorology at LMU (Director: Professor George Craig) has now looked at the question of whether the application of can improve the efficacy of climate modelling. The study, which was performed in collaboration with Professor Mike Pritchard of the University of California at Irvine und Pierre Gentine of Columbia University in New York, appears in the journal PNAS.

General circulation models typically simulate the global behavior of the atmosphere on grids whose cells have dimensions of around 50 km. Even using state-of-the-art supercomputers the relevant that take place in the atmosphere are simply too complex to be modelled at the necessary level of detail. One prominent example concerns the modelling of clouds which have a crucial influence on climate. They transport heat and moisture, produce precipitation, as well as absorb and reflect solar radiation, for instance. Many clouds extend over distances of only a few hundred meters, much smaller than the grid cells typically used in simulations – and they are highly dynamic. Both features make them extremely difficult to model realistically. Hence today’s models lack at least one vital ingredient, and in this respect, only provide an approximate description of the Earth system.

Read more

ICYMI overnight: A little more than an hour after its launch window opened—the delay was due to remnant thunderstorms in the area—#SpaceX’s Falcon 9 rocket launched from Florida early on Monday morning. The rocket’s first stage made a flawless flight, and then descended to a drone ship in the Atlantic Ocean and safely landed.


The company has now flown 16 missions this year.

Read more

Samsung has opened its second U.S. artificial intelligence (AI) research facility (sixth globally), as the Korean electronics giant continues to double down on its investments in transformative technologies.

Samsung announced last year that it was planning a new AI research hub, and in the intervening months it actually opened centers in Canada, the U.K., and Russia, in addition to existing facilities in Seoul (South Korea) and Mountain View, California.

Its latest center, which will focus chiefly on robotics, is located in Chelsea, New York City and was officially opened at a ceremony featuring renowned AI expert Daniel D. Lee, executive vice president of Samsung Research. Lee joined the company a couple of months back and will lead the new AI center.

Read more

I know 100 leaders in longevity area. All of them will be invited to the Longevity Impact Forum, to create sort of Alibaba of longevity. We can beat government agencies and big companies because of our spirit!


“Underdog” entrepreneur Jack Ma is now famous for his record setting IPO when he took his e-commerce company, Alibaba, public. But not many people know he started Alibaba in his one-room apartment with 17 friends. Watch where all the magic of Alibaba started and be sure to check out Jack Ma’s amazing life.

Read more