A futurologist predicts that developments in wearable and implantable technology will cause Homo sapiens to evolve into Homo Optimus by 2050.
Category: wearables – Page 76
One key question can it help control Glioblastoma.
A new “wearable” device being tested to suppress brain-cancer cell growth in patients ended its clinical trials early with positive results. Optune is a battery powered device researchers claim will extend the life of a patient with “newly diagnosed glioblastoma” when it is paired with traditional temozolomide chemotherapy. Researches were confident enough in its effectiveness to end the clinical trials (which ran from July 2009 to November 2014) of the device early. The device is likely not “the cure for cancer,” but it is a step forward in extending the life expectancy of brain-cancer patients and more research will be needed to see if it may be effective on other forms of cancer.
“With this new data, it appears the tumor-treating fields should be used upfront and become a standard of care. We should add this modality to what we’re currently doing for our patients,” said Dr. Maciej Mrugala, a brain-cancer specialist who led UW Medicine’s participation in the clinical trial.
“You get almost five months’ survival benefit. It may not sound like a lot, but if you’re living with this diagnosis, this is a meaningful improvement,” said Mrugala. UW Medicine was one of the first 15 U.S. providers to employ the novel tumor-treating therapy; now there are more than 200.
Glioblastoma multiforme is the most common primary brain tumor and a highly aggressive cancer. The Optune device, manufactured by Novocure, disrupts cancer-cell reproduction by sending alternating positive and negative charges between small ceramic discs embedded in on four sides of the mesh cap.
This is not good especially as we look at those aspirations for more nanobots to connect us to the cloud plus Mr. Kurzweil’s desire to live forever.
Medical device manufacturers are struggling to safeguard their newly connected designs from current and emerging security threats.
Natick, MA (PRWEB) January 29, 2016.
The medical device sector will be among the fastest growing markets for embedded security software through the next five years, according to a new report by VDC Research (click here to learn more). The market for medical devices spans a variety of hardware profiles including high-performance imaging systems, mobile diagnostic equipment and pumps, and wearable or implantable devices. Until recently, the majority of medical device manufacturers and others within the ecosystem treated security as an optional value-add under the misconception that their devices/products did not produce valuable data or would be a target for a hacker. The Internet of Things has enlarged the crosshairs on medical devices as such systems become more accessible and integrated with enterprise hospital platforms.
Scalpers offered contact lenses guaranteed to fool any ocular-based biometric ticketing technology.
He was right, of course, which explains all those people arriving at the stadium in all the usual ways. Some came by autonomous cars that dropped them off a mile or more from the stadium, their fitness wearables synced to their car software, both programmed to make their owner walk whenever the day’s calories consumed exceeded the day’s calories burned. Others turned up on the transcontinental Hyperloop, gliding at 760 miles per hour on a cushion of air through a low-pressure pipeline, as if each passenger was an enormous bank slip tucked into a pneumatic tube at a drive-through teller window in 1967. That was the year the first Super Bowl was played, midway through the first season of Star Trek, set in a space-age future that now looks insufficiently imagined.
And so hours before Super Bowl 100 kicked off—we persist in using that phrase, long after the NFL abandoned the actual practice—the pregame scene offered all the Rockwellian tableaux of the timeless tailgate: children running pass patterns on their hoverboards—they still don’t quite hover, dammit—dads printing out the family’s pregame snacks, grandfathers relaxing in lawn chairs with their marijuana pipes.
Archelis–Wearable Chair
Posted in biotech/medical, wearables
Wearable Chair is now A THING that helps surgeons through long hours of surgery. Actually, much more can be done.”
When engineers at the University of California, Berkeley, say they are going to make you sweat, it is all in the name of science. Specifically, it is for a flexible sensor system that can measure metabolites and electrolytes in sweat, calibrate the data based upon skin temperature and sync the results in real time to a smartphone.
While health monitors have exploded onto the consumer electronics scene over the past decade, researchers say this device, reported in the Jan. 28 issue of the journal Nature (“Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis”), is the first fully integrated electronic system that can provide continuous, non-invasive monitoring of multiple biochemicals in sweat.
The new sensor developed at UC Berkeley can be made into smart wristbands or headbands that provide continuous, real-time analysis of the chemicals in sweat.
Virtual Healthcare & IMSHealth is a major player in this service offering. Healthcare and clinic in your own home.
The University of Southern California Center for Body Computing has teamed with 8 partners to launch a Virtual Care Clinic. The idea with VCC is to create an integrated approach to the use of mobile apps, “virtual” doctors, artificial intelligence, data collection and analysis, as well as diagnostics and wearable sensors to create truly on-demand healthcare.
The partners involved in this effort are peer-reviewed clinical trial database startup Doctor Evidence, drug data resource IMS Health ($IMS), consumer design firm Karten Design, HIPAA-compliant cloud platform Medable, video creator Planet Grande, sensor-enabled pill startup Proteus Digital Health and vision player VSP Global.
VSP’s next-gen sensor-embedded eyewear prototype, dubbed Project Genesis, will be refined and tested at the VCC in consultation with USC CBC, which is the digital health innovation accelerator at Keck School of Medicine. The VCC will also involve USC’s Institute of Creative Technologies (ICT).
Luv the whole beautiful picture of a Big Data Quantum Computing Cloud. And, we’re definitely going to need it for all of our data demands and performance demands when you layer in the future of AI (including robotics), wearables, our ongoing convergence to singularity with nanobots and other BMI technologies. Why we could easily exceed $4.6 bil by 2021.
From gene mapping to space exploration, humanity continues to generate ever-larger sets of data—far more information than people can actually process, manage, or understand.
Machine learning systems can help researchers deal with this ever-growing flood of information. Some of the most powerful of these analytical tools are based on a strange branch of geometry called topology, which deals with properties that stay the same even when something is bent and stretched every which way.
Such topological systems are especially useful for analyzing the connections in complex networks, such as the internal wiring of the brain, the U.S. power grid, or the global interconnections of the Internet. But even with the most powerful modern supercomputers, such problems remain daunting and impractical to solve. Now, a new approach that would use quantum computers to streamline these problems has been developed by researchers at MIT, the University of Waterloo, and the University of Southern California…
Robotics store — could we eventually see a HomeDepot version of a Robotics Warehouse and More coming not too far in the future as a franchise across North America and Europe? Or, better yet, a Robotic Target for the latest clothing and accessories for your own personalized robot. In Japan, they actually have a fashion line for robots.
25 Jan, 2016 - The organization is led by President V. Scott Stoneburner. The mission of RobotStop is to create a more prosperous future through principled service and technological innovation. President V. Scott Stoneburner said, “We are extremely excited to launch RobotStop. We envision that robotics will soon be a booming market and our plan is to strategically position ourselves ahead of that exponential curve. As innovation and competition increases, prices have started to become more aligned to the consumer mass market.”
RobotStop, a global product retailer (www.robotstop.com), announced today that it has officially launched a new website and corporate identity. According to President V. Scott Stoneburner, RobotStop President and founder, the new website and brand are closely aligned with the company’s strategic vision for growth and expansion over the next decade, and beyond.
The RobotStop website offers a clean, modern design, easy-to-navigate functionality, and a content-rich site experience. The e-commerce function enables customers to quickly and easily order RobotStop LLC products from a broad range of categories, including Robots & Kits, UAVs & Drones, Wearable Technology, Virtual Reality, Hot New Robots, Miscellaneous Robot Products, Professional Robots etc.
Cannot wait for the new AR contacts.
NEW YORK, Jan. 21, 2016 /PRNewswire/ — This new IDTechEx report is focused on how the market for smart glasses and contact lenses is going to evolve in the next decade, based on the exciting research and developments efforts of recent years along with the high visibility some projects and collaborations have enjoyed. The amount of visibility this space is experiencing is exciting developers of a range of allied technologies into fast-tracking/focusing their efforts, as well as creating devices and components designed specifically to serve this emerging industry.
Some of the newest devices that have ignited significant interest in smart eyewear are going above and beyond the conventional definition of a smart object; they are in effect, portable, wearable computers with a host of functionalities, specially designed apps etc. that add new ways for the wearer to interact with the world along with smartphone capabilities, health tracking options and many other features. The features of some of the more advanced devices have been based on and have sparked worldwide innovation efforts aiming to create an ecosystem of components that will enable what is bound to be a revolution in form factor for wearables.
User interface is probably one of the most significant features in this revolution. As interfacing with computers undergoes a constant evolution, allowing for wider adoption as interaction becomes more “natural”, smartglasses are bringing about the next big step in this ever-changing space. From keyboards to touchscreens to cameras & positioning/location/infrared sensors, a new wave of innovation is making interfacing with computers gesture-based, and nowhere else is that more obvious than in eye-worn computing.