Toggle light / dark theme

How robotics is making live music a more enriching experience.


Scientists have developed a ‘smart’ wearable robotic limb that responds to human gestures and the music it hears, allowing drummers to play with three arms.

The two-foot long robotic arm can be attached to a musician’s shoulder, and knows what to play by listening to the music in the room. It improvises based on the beat and rhythm. For instance, if the musician plays slowly, the arm slows the tempo. If the drummer speeds up, it plays faster.

Another aspect of its intelligence is knowing where it is located at all times, where the drums are, and the direction and proximity of the human arms.

One key question can it help control Glioblastoma.


A new “wearable” device being tested to suppress brain-cancer cell growth in patients ended its clinical trials early with positive results. Optune is a battery powered device researchers claim will extend the life of a patient with “newly diagnosed glioblastoma” when it is paired with traditional temozolomide chemotherapy. Researches were confident enough in its effectiveness to end the clinical trials (which ran from July 2009 to November 2014) of the device early. The device is likely not “the cure for cancer,” but it is a step forward in extending the life expectancy of brain-cancer patients and more research will be needed to see if it may be effective on other forms of cancer.

“With this new data, it appears the tumor-treating fields should be used upfront and become a standard of care. We should add this modality to what we’re currently doing for our patients,” said Dr. Maciej Mrugala, a brain-cancer specialist who led UW Medicine’s participation in the clinical trial.

“You get almost five months’ survival benefit. It may not sound like a lot, but if you’re living with this diagnosis, this is a meaningful improvement,” said Mrugala. UW Medicine was one of the first 15 U.S. providers to employ the novel tumor-treating therapy; now there are more than 200.

This is not good especially as we look at those aspirations for more nanobots to connect us to the cloud plus Mr. Kurzweil’s desire to live forever.


Medical device manufacturers are struggling to safeguard their newly connected designs from current and emerging security threats.

Natick, MA (PRWEB) January 29, 2016.

The medical device sector will be among the fastest growing markets for embedded security software through the next five years, according to a new report by VDC Research (click here to learn more). The market for medical devices spans a variety of hardware profiles including high-performance imaging systems, mobile diagnostic equipment and pumps, and wearable or implantable devices. Until recently, the majority of medical device manufacturers and others within the ecosystem treated security as an optional value-add under the misconception that their devices/products did not produce valuable data or would be a target for a hacker. The Internet of Things has enlarged the crosshairs on medical devices as such systems become more accessible and integrated with enterprise hospital platforms.

Scalpers offered contact lenses guaranteed to fool any ocular-based biometric ticketing technology.

He was right, of course, which explains all those people arriving at the stadium in all the usual ways. Some came by autonomous cars that dropped them off a mile or more from the stadium, their fitness wearables synced to their car software, both programmed to make their owner walk whenever the day’s calories consumed exceeded the day’s calories burned. Others turned up on the transcontinental Hyperloop, gliding at 760 miles per hour on a cushion of air through a low-pressure pipeline, as if each passenger was an enormous bank slip tucked into a pneumatic tube at a drive-through teller window in 1967. That was the year the first Super Bowl was played, midway through the first season of Star Trek, set in a space-age future that now looks insufficiently imagined.

And so hours before Super Bowl 100 kicked off—we persist in using that phrase, long after the NFL abandoned the actual practice—the pregame scene offered all the Rockwellian tableaux of the timeless tailgate: children running pass patterns on their hoverboards—they still don’t quite hover, dammit—dads printing out the family’s pregame snacks, grandfathers relaxing in lawn chairs with their marijuana pipes.

Read more

When engineers at the University of California, Berkeley, say they are going to make you sweat, it is all in the name of science. Specifically, it is for a flexible sensor system that can measure metabolites and electrolytes in sweat, calibrate the data based upon skin temperature and sync the results in real time to a smartphone.

While health monitors have exploded onto the consumer electronics scene over the past decade, researchers say this device, reported in the Jan. 28 issue of the journal Nature (“Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis”), is the first fully integrated electronic system that can provide continuous, non-invasive monitoring of multiple biochemicals in sweat.

wristband sweat sensor

The new sensor developed at UC Berkeley can be made into “smart” wristbands or headbands that provide continuous, real-time analysis of the chemicals in sweat.

Read more