Toggle light / dark theme

Researchers at the RIKEN Center for Emergent Matter Science (CEMS) and the RIKEN Cluster for Pioneering Research (CPR) in Japan have developed a technique to improve the flexibility of ultra-thin electronics, such as those used in bendable devices or clothing. Published in Science Advances, the study details the use of water vapor plasma to directly bond gold electrodes fixed onto separate ultra-thin polymer films, without needing adhesives or high temperatures.

As get smaller and smaller, and the desire to have bendable, wearable, and on-skin electronics increases, conventional methods of constructing these devices have become impractical. One of the biggest problems is how to connect and integrate multiple devices or pieces of a that each reside on separate ultra-thin polymer films. Conventional methods that use layers of adhesive to stick electrodes together reduce flexibility and require temperature and pressure that are damaging to super-thin electronics. Conventional methods of direct metal-to-metal bonding are available, but require perfectly smooth and clean surfaces that are not typical in these types of electronics.

A team of researchers led by Takao Someya at RIKEN CEMS/CPR has developed a new method to secure these connections that does not use adhesive, high temperature, or high pressure, and does not require totally smooth or clean surfaces. In fact, the process takes less than a minute at room temperature, followed by about a 12-hour wait. The new technique, called water-vapor plasma-assisted bonding, creates stable bonds between gold electrodes that are printed into ultra-thin—2 thousandths of a millimeter—polymer sheets using a thermal evaporator.

Researchers have developed a rechargeable lithium-ion battery in the form of an ultra-long fiber that could be woven into fabrics. The battery could enable a wide variety of wearable electronic devices, and might even be used to make 3D-printed batteries in virtually any shape.

The researchers envision new possibilities for self-powered communications, sensing, and computational devices that could be worn like ordinary clothing, as well as devices whose batteries could also double as structural parts.

In a proof of concept, the team behind the new battery technology has produced the world’s longest flexible fiber battery, 140 meters long, to demonstrate that the material can be manufactured to arbitrarily long lengths. The work is described today in the journal Materials Today. MIT postdoc Tural Khudiyev (now an assistant professor at National University of Singapore), former MIT postdoc Jung Tae Lee (now a professor at Kyung Hee University), and Benjamin Grena SM ‘13, Ph.D. ‘17 (currently at Apple) are the lead authors on the paper. Other co-authors are MIT professors Yoel Fink, Ju Li, and John Joannopoulos, and seven others at MIT and elsewhere.

Imagine that your team is meeting to decide whether to continue an expensive marketing campaign. After a few minutes, it becomes clear that nobody has the metrics on-hand to make the decision. You chime in with a solution and ask Amazon’s virtual assistant Alexa to back you up with information: “Alexa, how many users did we convert to customers last month with Campaign A?” and Alexa responds with the answer. You just amplified your team’s intelligence with AI. But this is just the tip of the iceberg.

Intelligence amplification is the use of technology to augment human intelligence. And a paradigm shift is on the horizon, where new devices will offer less intrusive, more intuitive ways to amplify our intelligence.

Hearables, or wireless in-ear computational earpieces, are an example of intelligence amplification devices that have been adopted recently and rapidly. An example is Apple’s AirPods, which are smart earbuds that connect to Apple devices and integrate with Siri via voice commands. Apple has also filed a patent for earbuds equipped with biometric sensors that could record data such as a user’s temperature, heart rate, and movement. Similarly, Google’s Pixel Buds give users direct access to the Google Assistant and its powerful knowledge graph. Google Assistant seamlessly connects users to information stored in Google platforms, like email and calendar management. Google Assistant also provides users with highly-personalized recommendations, helps automate personal communication, and offloads monotonous tasks like setting timers, managing lists, and controlling IoT devices.

And it could work in wearables and light aircraft.

Researchers at Stanford University are developing an efficient new solar panel material that is fifteen times thinner than paper, a press statement reveals.

Made using transition metal dichalcogenides (TMDs), the materials have the potential to absorb a higher level of sunlight than other solar materials at the same time as providing an incredibly lightweight alternative to silicon-based solar panels.

Searching for silicon alternatives The researchers are part of a concerted effort within the scientific community to find alternative solar panel materials to silicon. Silicon is by far the most common material used for solar panels, but it’s heavy and rigid, meaning it isn’t particularly well suited to lightweight applications required for aircraft, spacecraft, electric vehicles, or even wearables.

Full Story:

In the novel-turned-movie Ready Player One by Ernest Cline, the protagonist escapes to an online realm aptly called OASIS. Instrumental to the OASIS experience is his haptic (relating to sense of touch) bodysuit, which enables him to move through and interact with the virtual world with his body. He can even activate tactile sensations to feel every gut punch, or a kiss from a badass online girl.

While no such technology is commercially available yet, the platform Meta, formerly known as Facebook, is in the early stages of creating haptic gloves to bring the virtual world to our fingertips. These gloves have been in the works for the past seven years, the company recently said, and there’s still a few more to go.

These gloves would allow the wearer to not only interact with and control the virtual world, but experience it in a way similar to how one experiences the physical world. The wearer would use the gloves in tandem with a headset for AR or VR. A video posted by Meta in a blog shows two users having a remote thumb-wrestling match. In their VR headsets, they see a pair of disembodied hands reflecting the motions that their own hands are making. In their gloves, they feel every squeeze and twitch of their partner’s hand—at least that’s the idea.

The team has set an internal deadline of 2025.

In a move that could peg it against electric vehicle market leader, Tesla, Apple has begun working aggressively on its fully autonomous electric car, Bloomberg reported. Developing a car has been on Apple’s agenda since 2014 but recent moves within the company signal a push towards making an Apple car a reality.

Given Apple’s history of taking regularly used products and transforming them into their must-have versions using excellent design, it is hardly a surprise. With Steve Jobs at the helm of affairs, Apple made the iPod even when music players were ubiquitous. Then the company revealed the iPhone when Nokia was still selling resistive touch screens as its premium product. And recently, the Apple Watch has become the “it” wearable even though there are other smartwatch options in the market. During a time where electric vehicles are in a surge, it only seems natural that the electric car is Apple’s next target.

OrCam’s reading device, ElectReon’s ‘smart road’ tech, a sensor for farming and security drones all make the list.


1. OrCam Read, a smart reading support device developed by OrCam Technologies, the maker of artificial intelligence-based wearable devices to help the blind and visually impaired read texts via audio feedback. The company launched OrCam Read in 2,020 a handheld digital reader meant to help people with language processing challenges, including dyslexia. The device (priced at $1,990) captures and reads out full pages of text and digital screens, and follows voice commands.

Wireless sensing devices, tools that allow users to sense movements and remotely monitor activities or changes in specific environments, have many applications. For instance, they could be used for surveillance purposes as well as to track the sleep or physical activities of medical patients and athletes. Some videogame developers have also used wireless sensing systems to create more engaging sports or dance-related games.

Researchers at Florida State University, Trinity University and Rutgers University have recently developed Winect, a new wireless sensing system that can track the poses of humans in 3D as they perform a wide range of free-form physical activities. This system was introduced in a paper pre-published on arXiv and is set to be presented at the ACM Conference on Interactive, Mobile, Wearables and Ubiquitous Technologies (Ubi Comp) 2,021 one of the most renowned computer science events worldwide.

“Our research group has been conducting cutting-edge research in wireless sensing,” Jie Yang, one of the researchers who carried out the study, told TechXplore. “In the past, we have proposed several systems to use Wi-Fi signals to sense various human activities and objects, ranging from large-scale human activities, to small-scale finger movements, sleep monitoring and daily objects For example, we proposed two systems dubbed E-eyes and WiFinger, which are among the first work to utilize Wi-Fi sensing to distinguish various types of daily activity and finger gestures.”

Penn State researchers developed a prototype of a wearable, noninvasive glucose sensor, shown here on the arm. Credit: Jia Zhu, Penn State.

Penn State researchers develop first-of-its-kind wearable, noninvasive glucose monitoring device prototype.

Noninvasive glucose monitoring devices are not currently commercially available in the United States, so people with diabetes must collect blood samples or use sensors embedded under the skin to measure their blood sugar levels. Now, with a new wearable device created by Penn State researchers, less intrusive glucose monitoring could become the norm.