Menu

Blog

Archive for the ‘wearables’ category: Page 28

Apr 24, 2021

Researchers develop ultrathin, self-powered e-health patches that can monitor a user’s pulse and blood pressure

Posted by in categories: biotech/medical, health, nanotechnology, robotics/AI, wearables

Scientists at Osaka University, in cooperation with Joanneum Research (Weiz, Austria), have developed wireless health monitoring patches that use embedded piezoelectric nanogenerators to power themselves with harvested biomechanical energy. This work may lead to new autonomous health sensors as well as battery-free wearable electronic devices.

As wearable technology and smart sensors become increasingly popular, the problem of providing power to all of these devices become more relevant. While the energy requirements of each component may be modest, the need for wires or even batteries become burdensome and inconvenient. That is why new energy harvesting methods are needed. Also, the ability for integrated health monitors to use ambient motion to both power and activate sensors will help accelerate their adoption in doctor’s offices.

Now, an international team of researchers from Japan and Austria has invented new ultraflexible patches with a ferroelectric polymer that can not only sense a patient’s pulse and blood pressure, but also power themselves from normal movements. The key was starting with a substrate just one micron thick. Using a strong electric field, ferroelectric crystalline domains in a copolymer were aligned so that the sample had a large electric dipole moment. Based on the piezoelectric effect, which is very efficient in converting natural motion into small electric voltages, the device responds rapidly to strain or pressure changes. These voltages can be transduced either into signals for the medical or to directly harvest the energy. “Our e-health patches may be employed as part of screening for lifestyle-related diseases such as heart disorders, signs of stress, and sleep apnea,” first-author Andreas Petritz says.

Apr 18, 2021

Robotic Exoskeletons Could One Day Walk

Posted by in categories: cyborgs, mobile phones, robotics/AI, transportation, wearables

**Engineers, using artificial intelligence and wearable cameras, now aim to help robotic exoskeletons walk by themselves.**

Increasingly, researchers around the world are developing lower-body exoskeletons to help people walk. These are essentially walking robots users can strap to their legs to help them move.

Continue reading “Robotic Exoskeletons Could One Day Walk” »

Apr 18, 2021

Scientists are on a path to sequencing 1 million human genomes and use big data to unlock genetic secrets

Posted by in categories: biotech/medical, genetics, health, information science, wearables

The more data collected, the better the results.


Understanding the genetics of complex diseases, especially those related to the genetic differences among ethnic groups, is essentially a big data problem. And researchers need more data.

1000, 000 genomes

Continue reading “Scientists are on a path to sequencing 1 million human genomes and use big data to unlock genetic secrets” »

Mar 29, 2021

3 Best Wearables for Life Extension in 2021

Posted by in categories: food, life extension, wearables

One wearable emerged victorious over the others in each of the three categories. I’m including the runners-up for context and to provide an alternative if you’re not convinced by my top pick.


Affiliate Disclaimer: Longevity Advice is reader-supported. When you buy something using links on our site, we may earn a few bucks.

I came to the human life extension community not as a spanner (initially), biohacker, or a young person filled with existential dread, but as a person obsessed with quantified self. As a teen, I used pencil and paper to track my sleep and my food intake. As a college student, I wore a pedometer and tracked my daily steps on a spreadsheet. In 2014, Fitbit released the Fitbit Force, and since then I’ve had some version of top wearable on my wrist, continuously tracking what I do.

Continue reading “3 Best Wearables for Life Extension in 2021” »

Mar 26, 2021

Researchers harvest energy from radio waves to power wearable devices

Posted by in categories: health, internet, solar power, sustainability, wearables

From microwave ovens to Wi-Fi connections, the radio waves that permeate the environment are not just signals of energy consumed but are also sources of energy themselves. An international team of researchers, led by Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in the Penn State Department of Engineering Science and Mechanics, has developed a way to harvest energy from radio waves to power wearable devices.

The researchers recently published their method in Materials Today Physics.

According to Cheng, current energy sources for wearable health-monitoring devices have their place in powering sensor devices, but each has its setbacks. Solar power, for example, can only harvest energy when exposed to the sun. A self-powered triboelectric can only harvest energy when the body is in motion.

Mar 21, 2021

Neuroscientists Unveil Tech for the Vision Impaired: Bionic Eyes, Textured Tablets and More

Posted by in categories: cyborgs, neuroscience, transhumanism, wearables

https://youtube.com/watch?v=HmJ0eWiv-fQ

Devices shift away from Robocop-like wearables to simpler, more accessible assistive solutions.


There are many, many wearable and portable devices aimed at improving life for the blind and visually impaired (in some cases, even restoring vision). Such devices have been developed for pretty much every part of the body: fingers, wrists, abdomen, chest, face, ears, feet, even the tongue.

Continue reading “Neuroscientists Unveil Tech for the Vision Impaired: Bionic Eyes, Textured Tablets and More” »

Mar 13, 2021

Israeli start-up develops ‘artificial brainwaves’ to treat strokes

Posted by in categories: biotech/medical, robotics/AI, wearables

The new treatment utilizes “artificial brainwaves” through a wearable device that according to clinical trials, resulted in 77% of subjects recovering faster from strokes if compared to those not using the treatment. The “artificial brainwaves” are delivered via electromagnetic radiation, which stimulates the nervous system to regrow and heal itself. In using this method, BrainQ was able to imitate the processes of neural network synchronization.

In a study conducted by the company, using a double-blind randomized controlled trial, it was found that after eight weeks of treatment, 77% of test subjects receiving BrainQ’s therapy had scores of 1 or 0 on the modified rankin scale, which indicates that either no symptoms or minor symptoms resulted from the trial, along with no significant disability.

The results of the study is expected to be presented at the International Stroke Conference in late March.

Mar 9, 2021

Reduced heat leakage improves wearable health device

Posted by in categories: biotech/medical, health, wearables

North Carolina State University engineers continue to improve the efficiency of a flexible device worn on the wrist that harvests heat energy from the human body to monitor health.

In a paper published in npj Flexible Electronics, the NC State researchers report significant enhancements in preventing leakage in the flexible body heat harvester they first reported in 2017 and updated in 2020. The harvesters use from the human body to power —think of smart watches that measure your heart rate, blood oxygen, glucose and other health parameters—that never need to have their batteries recharged. The technology relies on the same principles governing rigid thermoelectric harvesters that convert heat to .

Flexible harvesters that conform to the are highly desired for use with wearable technologies. Mehmet Ozturk, an NC State professor of electrical and computer engineering and the corresponding author of the paper, mentioned superior skin contact with , as well as the ergonomic and comfort considerations to the wearer, as the core reasons behind building flexible thermoelectric generators, or TEGs.

Mar 9, 2021

‘Wearable microgrid’ uses the human body to sustainably power small gadgets

Posted by in categories: biotech/medical, engineering, wearables

Nanoengineers at the University of California San Diego have developed a “wearable microgrid” that harvests and stores energy from the human body to power small electronics. It consists of three main parts: sweat-powered biofuel cells, motion-powered devices called triboelectric generators, and energy-storing supercapacitors. All parts are flexible, washable and can be screen printed onto clothing.

The technology, reported in a paper published Mar. 9 in Nature Communications, draws inspiration from community microgrids.

“We’re applying the concept of the microgrid to create systems that are powered sustainably, reliably and independently,” said co-first author Lu Yin, a nanoengineering Ph.D. student at the UC San Diego Jacobs School of Engineering. “Just like a city microgrid integrates a variety of local, renewable power sources like wind and solar, a wearable microgrid integrates devices that locally harvest energy from different parts of the body, like sweat and movement, while containing .”

Mar 8, 2021

A design to improve the resilience and electrical performance thin metal film based electrodes

Posted by in categories: entertainment, health, wearables

Flexible electrodes, electronic components that conduct electricity, are of key importance for the development of numerous wearable technologies, including smartwatches, fitness trackers and health monitoring devices. Ideally, electrodes inside wearable devices should retain their electrical conductance when they are stretched or deformed.

Many flexible electrodes developed so far are made of placed on elastic substrates. While some of these electrodes are flexible and well, sometimes, the metal are fractured, which can result in sudden electricity disconnection.

Researchers at University of Illinois at Urbana-Champaign have recently introduced a new design that could enable the development of strain-resilient flexible electrodes that conduct electricity well, even when they are stretched or deformed. This design, outlined in a paper published in Nature Electronics, involves the introduction of a thin, two-dimensional (2-D) interlayer, which reduces the risk of fractures and retains electrical connections of metal films.

Page 28 of 62First2526272829303132Last