Menu

Blog

Archive for the ‘wearables’ category: Page 19

Oct 27, 2022

Research team proposes unclonable, invisible machine vision markers using cholesteric spherical reflectors

Posted by in categories: augmented reality, blockchains, economics, mobile phones, physics, robotics/AI, wearables

Over the last three decades, the digital world that we access through smartphones and computers has grown so rich and detailed that much of our physical world has a corresponding life in this digital reality. Today, the physical and digital realities are on a steady course to merging, as robots, Augmented Reality (AR) and wearable digital devices enter our physical world, and physical items get their digital twin computer representations in the digital world.

These digital twins can be uniquely identified and protected from manipulation thanks to crypto technologies like blockchains. The trust that these technologies provide is extremely powerful, helping to fight counterfeiting, increase supply chain transparency, and enable the circular economy. However, a weak point is that there is no versatile and generally applicable identifier of physical items that is as trustworthy as a blockchain. This breaks the connection between the physical and digital twins and therefore limits the potential of technical solutions.

In a new paper published in Light: Science & Applications, an interdisciplinary team of scientists led by Professors Jan Lagerwall (physics) and Holger Voos (robotics) from the University of Luxembourg, Luxembourg, and Prof. Mathew Schwartz (architecture, construction of the built environment) from the New Jersey Institute of Technology, U.S., propose an innovative solution to this problem where physical items are given unique and unclonable fingerprints realized using cholesteric spherical reflectors, or CSRs for short.

Oct 25, 2022

This 3D-printed wearable mosquito repellent could finally end re-applying sprays

Posted by in category: wearables

The study is in the early phase but promising.

We use body sprays to get rid of mosquitos most of the time. We can even use herbs such as sage and rosemary to keep them out of our homes. Martin Luther University Halle-Wittenberg scientists have created a novel method of delivering insect repellent (MLU). The results were published in the.

The researchers used “IR3535,” an insect repellent created by MERCK, to create their prototypes.

Continue reading “This 3D-printed wearable mosquito repellent could finally end re-applying sprays” »

Oct 22, 2022

A new robot can help with the fear of injections during medical treatments

Posted by in categories: biotech/medical, robotics/AI, wearables

The wearable robot helps patients who are afraid of needles.

A recent study in Japan has revealed that a hand-held soft robot can improve the experience of patients while undergoing medical treatments, such as injections and other unpleasant therapies or immunizations.


Inspired by vaccinations during Covid

Continue reading “A new robot can help with the fear of injections during medical treatments” »

Oct 20, 2022

A high-resolution, wearable electrotactile rendering device that virtualizes the sense of touch

Posted by in categories: biotech/medical, engineering, mobile phones, virtual reality, wearables

A collaborative research team co-led by City University of Hong Kong (CityU) has developed a wearable tactile rendering system, which can mimic the sensation of touch with high spatial resolution and a rapid response rate.

The team demonstrated its application potential in a braille display, adding the sense of touch in the metaverse for functions such as virtual reality shopping and gaming, and potentially facilitating the work of astronauts, deep-sea divers and others who need to wear thick gloves.

Continue reading “A high-resolution, wearable electrotactile rendering device that virtualizes the sense of touch” »

Oct 16, 2022

Turkish scientists develop ‘fiber sensor’ shoes for early diagnosis

Posted by in categories: biotech/medical, health, nanotechnology, wearables

A new technology that incorporates flexible fiber sensors into shoes has been developed by the National Nanotechnology Research Center (UNAM) at Bilkent University and is able to identify a number of health issues, including Parkinson’s disease and gait disorders.

Project manager Mustafa Ordu, who specialized in the production and characterization of fiber cables that can generate electricity for wearable devices, explained that the technology developed at UNAM is loaded with smart sensors that can monitor body movements and determine issues and diseases, with the potential to diagnose many health problems.

Further explaining the cutting-edge technology, he said that it can be woven into body wear or incorporated into footwear since by knitting these cables together like a type of threaded fabric, they can be incorporated into clothing as fibers. “This is what makes our team stand out among the existing laboratories in the world; we make smart sensors with flexible fiber and two-dimensional materials,” said Ordu.

Oct 15, 2022

Graphene improves circuits in flexible and wearable electronics

Posted by in categories: computing, health, mobile phones, nanotechnology, wearables

At 200 times stronger than steel, graphene has been hailed as a super material of the future since its discovery in 2004. The ultrathin carbon material is an incredibly strong electrical and thermal conductor, making it a perfect ingredient to enhance semiconductor chips found in many electrical devices.

But while graphene-based research has been fast-tracked, the nanomaterial has hit roadblocks: in particular, manufacturers have not been able to create large, industrially relevant amounts of the material. New research from the laboratory of Nai-Chang Yeh, the Thomas W. Hogan Professor of Physics, is reinvigorating the graphene craze.

Continue reading “Graphene improves circuits in flexible and wearable electronics” »

Oct 13, 2022

‘Smart plastic’ material is step forward toward soft, flexible robotics and electronics

Posted by in categories: robotics/AI, wearables

Inspired by living things from trees to shellfish, researchers at The University of Texas at Austin set out to create a plastic much like many life forms that are hard and rigid in some places and soft and stretchy in others. Their success—a first, using only light and a catalyst to change properties such as hardness and elasticity in molecules of the same type—has brought about a new material that is 10 times as tough as natural rubber and could lead to more flexible electronics and robotics.

The findings are published today in the journal Science.

Continue reading “‘Smart plastic’ material is step forward toward soft, flexible robotics and electronics” »

Oct 13, 2022

Regeneration, Intelligence in Life & Memory — Dr Michael Levin

Posted by in categories: biotech/medical, education, ethics, evolution, life extension, wearables

What is limb regeneration and what species possess it? How is it achieved? What does this tell us about intelligence in biological systems and how could this information be exploited to develop human therapeutics? Well, in this video, we discuss many of these topics with Dr Michael Levin, Principal Investigator at Tufts University, whose lab studies anatomical and behavioural decision-making at multiple scales of biological, artificial, and hybrid systems.

Find Michael on Twitter — https://twitter.com/drmichaellevin.

Continue reading “Regeneration, Intelligence in Life & Memory — Dr Michael Levin” »

Oct 6, 2022

Disposable electronics on a simple sheet of paper

Posted by in categories: biotech/medical, mobile phones, wearables

Discarded electronic devices, such as cell phones, are a fast-growing source of waste. One way to mitigate the problem could be to use components that are made with renewable resources and that are easy to dispose of responsibly. Now, researchers reporting in ACS Applied Materials & Interfaces have created a prototype circuit board that is made of a sheet paper with fully integrated electrical components, and that can be burned or left to degrade.

Most small electronic devices contain that are made from glass fibers, resins and metal wiring. These boards are not easy to recycle and are relatively bulky, making them undesirable for use in point-of-care , environmental monitors or personal wearable devices.

One alternative is to use paper-based circuit boards, which should be easier to dispose of, less expensive and more flexible. However, current options require specialized paper, or they simply have traditional metal circuitry components mounted onto a sheet of paper. Instead, Choi and colleagues wanted to develop circuitry that would be simple to manufacture and that had all the electronic components fully integrated into the sheet.

Oct 5, 2022

Stretchy, Wearable Synaptic Transistor Turns Robotics Smarter

Posted by in categories: biotech/medical, robotics/AI, wearables

A team of Penn State engineers has created a stretchy, wearable synaptic transistor that could turn robotics and wearable devices smarter. The device developed by the team works like neurons in the brain, sending signals to some cells and inhibiting others to enhance and weaken the devices’ memories.

The research was led by Cunjiang Yu, Dorothy Quiggle Career Development Associate Professor of Engineering Science and Mechanics and associate professor of biomedical engineering and of materials science and engineering.

The research was published in Nature Electronics.

Page 19 of 65First1617181920212223Last